Actions de groupes et géométries

1.1 Actions de groupes

- **Définitions 1.1.1.** 1. Un groupe G agit sur un ensemble X s'il existe un morphisme de groupes $\phi: G \longrightarrow S_X$, où S_X désigne le groupe des permutations de l'ensemble X. Pour $g \in G$ et $x \in X$, on note $g.x := \phi(g)(x)$.
 - 2. Si $x \in X$, l'orbite de x, notée \mathcal{O}_x , est l'ensemble $\{y \in X | \exists g \in G : g.x = y\}$.
 - 3. Si $x \in X$, on note G_x le **sabilisateur** de x, c'est-à-dire $\{g \in G | g.x = x\}$.

On résume, dans la proposition suivante, les propriétés essentielles des actions de groupes.

Proposition 1.1.2. Soit G un groupe agissant sur un ensemble X.

1. Pour tout $(g,g') \in G^2$ et pour tout $x \in X$, on a

$$(gg').x = g.(g'.x)$$
 et $1_G.x = x$.

- 2. Pour tout $x \in X$, G_x est un sous groupe de G.
- 3. Les orbites forment une partition de X.
- 4. Pour tout $x \in X$, \mathcal{O}_x est en bijection avec l'ensemble quotient G/G_x , en particulier, si G est fini, $|\mathcal{O}_x| = (G : G_x)$.
- 5. On suppose G et X finis, alors $|X| = \sum_{t \in T} |\mathcal{O}_t| = \sum_{t \in T} (G : G_t)$. Où T désigne une tranversale de l'ensemble X, c'est-à-dire un sous-ensemble de X contenant un élément et un seul de chacune des orbites pour l'action de G (Ceci est appelé l'équation des classes).
- 6. Si $(x,y) \in X^2$ et $g \in G$ sont tels que y = g.x, alors $G_y = gG_xg^{-1}$.
- 7. On suppose G et X finis. Notons X/G l'ensemble des orbites de X pour l'action de G et posons , pour $g \in G$, $F_g := \{x \in X | g.x = x\}$. On a $|X/G| = \frac{1}{|G|} \sum_{g \in G} |F_g|$. Cette formule porte le nom de formule de Burnside-Frobenius.

Démonstration. Pour le point 7 on calcule le cardinal de l'ensemble

$$E = \{(g,x) \in G.X | g.x = y\}$$

de deux manières et on utilise le point 5 et le point 4.

Définitions 1.1.3. Soit G un groupe agissant sur un ensemble X, on dit que G agit de manière **transitive** si

$$\forall (x,y) \in X^2, \exists g \in G, y = g.x.$$

G agit de manière simplement transitive si

$$\forall (x,y) \in X^2, \exists ! g \in G, y = g.x.$$

G agit fidèlement sur X si

$$\forall (g,g') \in G^2, \forall x \in X, g.x = g'.x \Rightarrow g = g'.$$

X est un **espace homogène** si G agit fidèlement et transitivement sur X .

Géométrie affine

2.1 Espaces affines

Définition 2.1.1. Un espace affine est la donnée d'un ensemble X, d'un espace vectoriel \overrightarrow{X} et d'une action ϕ de \overrightarrow{X} , + sur X fidèle et simplement transitive.

La dimension d'un espace affine X est la dimension de son espace vectoriel associée \vec{X} .

Proposition 2.1.2. Les affirmations suivantes sont équivalentes:

- 1. $(X, \overrightarrow{X}, \phi)$ est un espace affine.
- 2. il existe une application $f: X^2 \longrightarrow \overrightarrow{X}$ telle que, et notant $f((x,y)) = \overrightarrow{xy}$ for $(x,y) \in X^2$, on a
 - a) $\forall x \in X, \forall \overrightarrow{v} \in \overrightarrow{X}, \exists y \in X \ tel \ que \ \overrightarrow{xy} = \overrightarrow{v}$.
 - b) $\forall (x,y) \in X^2, \overrightarrow{xy} = \overrightarrow{0}$ si et seulement si x = y.
 - c) $\forall (x,y,z) \in X^3, \overrightarrow{xy} + \overrightarrow{yz} = \overrightarrow{xz}$ (Chasles).
- 3. Pour tout x dans \overrightarrow{X} , il existe une bijection $f_x: X \longrightarrow \overrightarrow{X}: y \mapsto \overrightarrow{xy}$ telle que:

$$\forall (x,y,z) \in X^3, \overrightarrow{xy} + \overrightarrow{yz} = \overrightarrow{xz}.$$

Notation 2.1.3. Pour $x \in X$ et $\overrightarrow{v} \in \overrightarrow{X}$, on notera le résultat de l'action de \overrightarrow{v} sur x par $x + \overrightarrow{v}$. En utilisant les notations du point 2 de 2.1.2 on obtient, pour $(x,y) \in X^2$, l'écriture commode :

$$y = x + \overrightarrow{xy}$$
.

Exercices 2.2.4

Soient $(x,y,z,t) \in X^4$ $(\overrightarrow{a},\overrightarrow{b} \in \overrightarrow{X})$. Montrer que:

1.
$$x + (\overrightarrow{a} + \overrightarrow{b}) = (x + \overrightarrow{a}) + \overrightarrow{b}$$

1.
$$x + (\overrightarrow{a} + \overrightarrow{b}) = (x + \overrightarrow{a}) + \overrightarrow{b}$$
.
2. $\overrightarrow{xy} + (\overrightarrow{b} - \overrightarrow{a}) = (x + \overrightarrow{a})(y + \overrightarrow{b})$.

- 3. $\overrightarrow{xy} = \overrightarrow{zt} \Leftrightarrow \overrightarrow{xz} = \overrightarrow{yt}$.
- **Exemples 2.1.5.** 1. Soient X un ensemble, V un vectoriel et $f: X \longrightarrow V$ une bijection. On peut alors munir X d'une structure d'espace affine en posant $\overrightarrow{xy} = f(y) f(x)$. En particulier, si X = V et f = Id., on peut munir V lui même d'une structure d'espace affine.
 - 2. On considère un système de p-équations linéaires à n inconnues sur un corps K:

$$\sum_{j=1}^{n} a_{ij} x_j = b_j \,, \quad 1 \le i \le p \,, \quad a_{ij} \in K \,.$$

Soit S l'ensemble des solutions de ce système c'est à dire l'ensemble : $\{x \in K^n \mid Ax = b\}$ où $A = (a_{ij}) \in M_{p,n}(K)$. Soit aussi S_0 le sous vectoriel de K^n formé par les solutions de l'équation Ax = 0. On vérifie que (S,S_0) est un espace affine.

Définitions 2.1.6. Soit (X, \overrightarrow{X}) et (Y, \overrightarrow{Y}) des espaces affines.

- 1. Un sous-espace affine (sous-variété linéaire affine) est un sous ensemble de X de la forme $x_0 + \overrightarrow{Z}$ où \overrightarrow{Z} est un sous espace de \overrightarrow{X} et $x_0 \in X$.
- 2. Une application $f: X \longrightarrow Y$ est affine s'il existe une application linéaire $\overrightarrow{f}: \overrightarrow{X} \longrightarrow \overrightarrow{Y}$ telle que:

$$\forall (x_1, x_2) \in X^2, \quad \overrightarrow{f}(\overrightarrow{x_1 x_2}) = \overrightarrow{f(x_1) f(x_2)}.$$

- 3. Un système de points pondérés de X est un ensemble fini $\{(x_1,\alpha_1),\ldots,(x_n,\alpha_n)\}\subseteq (X\times K)^n$.
- 4. Soit le système de points pondérés $\{(x_1,\alpha_1),\ldots,(x_n,\alpha_n)\}\subseteq (X\times K)^n$ tel que $\sum_{i=1}^n\alpha_i\neq 0$. On appelle barycentre d'un tel système un point G de X tel que $\sum_{i=1}^n\alpha_i\overrightarrow{Gx_i}=\overrightarrow{0}$. On écrira $G=Bar\{(x_i,\alpha_i)\}$.

Proposition 2.1.7. Soient X un espace affine sur un corps k et un système $\{(A_i,\lambda_i)\}_{i=1}^n$ de points pondérés de X tel que $\sum_{i=1}^n \lambda_i \neq 0$.

- a) Les propriétés suivantes sont équivalentes :
 - (a) G est le barycentre du système $\{(A_i,\lambda_i)\}_{i=1}^n$.
 - (b) $\exists A \in X : (\sum_{i} \lambda_{i}) \overrightarrow{AG} = \sum_{i} \lambda_{i} \overrightarrow{AA_{i}}.$
 - (c) $\forall A \in X \quad (\sum_{i} \lambda_{i}) \overrightarrow{AG} = \sum_{i} \lambda_{i} \overrightarrow{AA_{i}}.$
- b) $\forall \lambda \in k$, $Bar\{A_i, \lambda_i\} = Bar\{A_i, \lambda_i\}$
- c) Soit $\bigcup_{j=1}^{l} I_j = \{1, \ldots, n\}$ une partition telle que pour tout $\alpha \in \{1, \ldots, l\}$, on a $\mu_{\alpha} = \sum_{i \in I_{\alpha}} \lambda_i \neq 0$, alors, si on pose $G_{\alpha} := Bar\{A_i, \lambda_i\}_{i \in I_{\alpha}}$, on a $Bar\{A_i, \lambda_i\}_{i \in I} = Bar\{G_{\alpha}, \mu_{\alpha}\}_{1 \leq \alpha \leq l}$.

Exercice 2.8

Soit $\{(A_i, \lambda_i)\}_{i=1}^n$ de points pondérés d'un espace affine X, on considère la fonction $L: X \longrightarrow \overrightarrow{X}: M \mapsto \sum_{i=1}^n \lambda_i \overrightarrow{MA_i}$.

1. Montrer que si $\sum_{i} \lambda_{i} = 0$ alors L est constante.

2. Montrer que si $\sum_i \lambda_i \neq 0$ alors L est bijective. Caractériser alors le barycentre des points pondérés $\{(A_i, \lambda_i)\}_{i=1}^n$ au moyen de la fonction L.

Proposition 2.1.9. Soit (X, \overrightarrow{X}) un espace affine et $Y \subseteq X$. Les affirmations suivantes sont équivalentes :

- 1. Y est sous espace affine de X.
- 2. $\{\overrightarrow{y_1y_2} \mid (y_1,y_2) \in Y^2\}$ est un sous espace vectoriel de \overrightarrow{X} .
- 3. Tout barycentre de points pondérés de Y est encore un point de Y.

2.2 applications affines et groupe affine

Définition 2.2.1. Soient X et X' deux espaces affines définies sur un même corps; une application $\varphi: X \longrightarrow X'$ est dite affine s'il existe une application linéaire $\overrightarrow{\varphi}: \overrightarrow{X} \longrightarrow \overrightarrow{X'}$ telle que pour tout $a,b \in X$ on a

$$\overrightarrow{\varphi(a)\varphi(b)} = \overrightarrow{\varphi}(\overrightarrow{ab})$$

Proposition 2.2.2. Soient X,X' deux espaces affines et $\varphi:X\longrightarrow X'$. Les affirmations suivantes sont équivalentes:

- i) φ est affine.
- $ii) \ \forall M \in X \quad \forall \overrightarrow{x} \in \overrightarrow{X}, \quad \varphi(M + \overrightarrow{x}) = \varphi(M) + \overrightarrow{\varphi}(\overrightarrow{x}).$
- $iii) \ \forall \overrightarrow{x} \in \overrightarrow{X}, \quad \varphi.t_{\overrightarrow{x}} = t_{\overrightarrow{\varphi}(\overrightarrow{x})}.\varphi.$
- $iv \ \forall (M,N) \in X^2, \ \overrightarrow{(\varphi)}(\overrightarrow{MN}) = \overrightarrow{\varphi(M)\varphi(N)}.$
- $v) \varphi$ préserve les combinaisons barycentriques : i.e...

Proposition 2.2.3. Soient X, X', X'' trois espaces affines et $\varphi : X \longrightarrow X'$ une application affine. Alors

- 1. $\overrightarrow{\varphi}$ est unique.
- 2. φ est surjective (resp. injective) si et seulement si $\overrightarrow{\varphi}$ l'est.
- 3. $Si \ \psi : X' \longrightarrow X''$ est aussi affine alors $\psi . \varphi$ est affine et $\overrightarrow{\psi} . \overrightarrow{\varphi} = (\overrightarrow{\psi}) . \overrightarrow{\varphi}$.

Voici une autre proposition qui montrent comment associer des applications affines à une application linéaire:

Proposition 2.2.4. Soient X,X' deux espaces affines définies sur un même corps, $a \in X$ $A' \in X'$ et φ une application linéaire de \overrightarrow{X} vers $\overrightarrow{X'}$. Alors il existe une unique application affine $f: X \longrightarrow X'$ telle que f(A) = A' et $\overrightarrow{f} = \varphi$.

matrice d'une application affine dans un repère affine.

Lemma 2.2.5. Soit $F \neq emptyset$ un sous espace affine de X et \overrightarrow{Z} un sous espace vectoriel de \overrightarrow{X} . Pour que \overrightarrow{F} et \overrightarrow{Z} soient supplémentaires il faut et il suffit que pour tout $x \in X$, la variété $x + \overrightarrow{Z}$ coupe F en un et un seul point.

Soit $F \subseteq X$ et $\overrightarrow{Z} \subseteq \overrightarrow{X}$. Supposons que $\overrightarrow{X} = \overrightarrow{F} \oplus \overrightarrow{X}$ et soit $\sigma : \overrightarrow{X} \longrightarrow \overrightarrow{F}$ et $\tau : \overrightarrow{X} \longrightarrow \overrightarrow{Z}$, les projections correspondantes.

Exercice Montrer que pour tout $c,d \in F$ et pour tout $x \in X$, on a $c + \sigma(\overrightarrow{cx}) = d + \sigma(\overrightarrow{dx})$

Définition 2.2.6. La projection de X sur F parallèlement à \overrightarrow{Z} est l'application affine p définie par p(c) = c et $\overrightarrow{p} = \sigma$.

Remarque 2.2.7. 1. p fixe les points de F et p est indépendante du point $c \in F$ choisi.

- 2. Pour $x \in X$, p(x) est l'unique point de $x + \overrightarrow{Z} \cap F$ donné par le lemme.
- 3. On a p.p = p.
- 4. réciproquement: si $f: X \longrightarrow X$ est une application affine telle que f.f = f alors f est une projection (sur im(f) parallèlement à $ker(\overrightarrow{f})$).

Définition 2.2.8. affinité de base F de direction \overrightarrow{Z} et de rapport β

Proposition 2.2.9. 1. toute affinité est affine.

2. Toute affinité qui n'est pas une projection est bijective.

Définition 2.2.10. Soit H un hyperplan d'un espace affine X. On dit qu'une application affine $u: X \longrightarrow X$ est une transvection de base H si $F(u) := \{x \in X | u(x) = x\} = H$ et si pour tout $x \in X$, $\overrightarrow{xu(x)} \in H$.

Theorem 2.2.11. Soit h un hyperplan de 'un espace affine X, $A \notin H$, $B \in X$. Alors

- 1. $\exists ! u : X \longrightarrow X$ affine telque $H \subseteq F(u)$ et u(A) = B.
- 2. $\forall x, \overrightarrow{xu(x)}$ et \overrightarrow{AB} sont linéairement dépendants.
- 3. u est une transvection si $\overrightarrow{AB} \in H$ et une affinité si $\overrightarrow{AB} \notin \overrightarrow{H}$

Corollary 2.2.12. Toute transvection est bijective et son inverse est une transvection.

Lemma 2.2.13. Soit $\beta \in K^* \ u : X \longrightarrow X$. Les CSSE:

- 1. $\forall (A,B) \in X^2 \overrightarrow{u(A)u(B)} = \beta \overrightarrow{AB}$.
- 2. u est affine et $\overrightarrow{u} = \beta id_{\overrightarrow{X}}$.
- 3. u est une translation (si $\beta = 1$) ou une homothétie de rpport β .

Définition 2.2.14. Les applications $u: X \longrightarrow X$ telles que $\overrightarrow{u} = \beta id$, $\beta \in K^*$, sont appelées les homothéties-translations (ou les dilatations). L'ensemble des homtéties-translations est noté HT(X).

Corollary 2.2.15. SoitX un espace affine de dimension ≥ 2 . Les éléments de HT(X) sont exactement les bijections de X sur X qui transforment toute droite en une droite parallèle.

Theorem 2.2.16. Soit X un espace affine, \overrightarrow{X} sa direction et $a \in X$. On note $GA(X) = \{f : X \longrightarrow X | f \text{ est affine et bijective}\}, \ GA_a(X) = \{f \in GA(X) | f(a) = a\} \text{ et } GL(\overrightarrow{X}) = \{f : \overrightarrow{X} \longrightarrow \overrightarrow{X} | f \text{ est unisomorphisme}\}.$

1. GA(X) est un groupe pour la composition.

- 2. $GA_a(X)$ est un sous groupe de GA(X) isomorphe à $GL(\overrightarrow{X})$.
- 3. Soit $\phi: GA(X) \longrightarrow GL(\overrightarrow{X}): f \mapsto \overrightarrow{f}$ est un épimorphisme de groupes et de noyau $T(X) = \{translations\}.$
- 4. Soit $a \in X$ et $f \in GA(X)$, il existe (s,g) et (t,h) dans $T(x) \times GA_a(X)$ uniquement déterminés par f et telles que f = s,g = h,t.
- 5. T(X) et HT(X) sont des sous groupes normaux de GA(X).
- 6. Pour tout $a \in X$, le groupe GA(X) est isomorphe au produit semi-direct $T(X) \times_{\sigma} GA_a(X)$ ou $\sigma_g(t) = gtg^{-1}$ pour $t \in T(X), g \in GA(X)$.

Enonçons le théorème fondamentale de la géométrie affine:

Theorem 2.2.17. Soit X et Y deux espaces affines sur le corps \mathbb{R} tels que $dimX \geq 2$. Toute bijection de X sur Y qui applique trois points alignés de X sur trois points alignés de Y est affine.

2.3 Convexité

Dans cette section, X désigne un espace affine sur le corps des réels.

Lemma 2.3.1. Soit X un espace affine réel et C une partie de X. Les affirmations suivantes sont équivalentes:

- 1. Le barycentre G de toute famille finie $\{(A_1,\lambda_1),\ldots(A_n,\lambda_n)\}$ de points pondérés de C telle que $\lambda_1 \geq 0 \ldots \lambda_n \geq 0$ et $\sum_{i=1}^n \lambda_i = 1$.
- 2. $\forall M \in C \ \forall N \in C \ [MN] = \{M + \overrightarrow{\lambda MN} : 0 \le \lambda \le 1\} \subseteq C$.

Définition 2.3.2. Une partie C d'un espace affine réel X est dite **convexe** si les conditions équivalentes du lemme ci-dessus sont vérifiées.

Proposition 2.3.3. Soient $C \subseteq X, C4 \subseteq X'$ deux sous ensembles d'espaxes affines réels et $f: X \longrightarrow X'$ une application affine. Alors:

- 1. Si C est convexe alors f(C) est un convexe.
- 2. Si C' est un convexe alors $f^{-1}(C')$ est convexe.

Cette section sera augmentée ultérieurement.

Géométrie vectorielle euclidienne

3.1 Formes bilinéaires symétriques

Définition 3.1.1. Soit V un K-vectoriel (Carctéristique $K \neq 2$), et $\underline{e} := \{e_1, \ldots, e_n\}$ une base de V. Une application bilinéaire symétrique $b: V \times V \longrightarrow K$ est entiérement déterminée par la matrice notée $Gram_{\underline{e}}(b) = (b(e_i, e_j)_{ij})$. Réciproquement si une base $e_1, dots, e_n$ de V est fixée, toute matrice symétrique $n \times n$ permet de définir une forme bilinéaire sur V.

La proposition suivante précise ce que devient la matrice gramienne lors d'un changement de base.

Proposition 3.1.2. Soit \underline{e} et $\underline{e'}$ deux bases de V. Notons P la matrice de passage: (i.e. $e'_i = \sum_{k=1}^n p_{ik} e_k$), alors

$$Gram_{\underline{e'}}b = Pgram_{\underline{e}}bP^t$$

Définition 3.1.3. Soit X un sous-ensemble d'un espace vectoriel V muni d'une forme bilinéaire b. L'orthogonal de X est

$$X^{\perp} = \{ v \in V \mid b(v, x) = 0 \, \forall x \in X \}.$$

 X^{\perp} est un sous vectoriel de V. En particulier V^{\perp} est appelé le **radical** de V. On dit que la forme b est non dégénéré si $V^{\perp}=0$.

Proposition 3.1.4. Soit (V,b) un espace vectoriel mni d'une forme bilinéaire symétrque. Les affirmations suivantes sont équivalentes:

- 1. b est non dégénéré.
- 2. Pour toute base e de V Gram_eb est une matrice inversible.
- 3. $\hat{b}: V \longrightarrow V^*: v \mapsto b_v$, where for $u \in V$ we have $b_v(u) = b(v,u)$.

Theorem 3.1.5. Soit V un K-vectoriel, $b: V \times V \longrightarrow K$ une forme bilinéaire symétrique alors il existe une base orthogonale de V. Si $K = \mathbb{R}$ et \underline{e} , $\underline{e'}$ sont deux bases orthogonales de V alors

$$|\{e_i|b(e_i,e_i)>0\}|=|\{e_i'|b(e_i',e_i')>0\}|$$

$$|\{e_i|b(e_i,e_i)<0\}| = |\{e_i|b(e_i,e_i)<0\}|$$

 $|\{e_i|b(e_i,e_i)=0\}| = |\{e_i|b(e_i,e_i)=0\}|$

3.2 Applications adjointes

Theorem 3.2.1. Soit b une forme bilinéiare symétrique non dégénérée sur un espace vectoriel V et $f: V \longrightarrow V$ une application linéaire. Il existe une et une seule application linéaire $f^*: V \longrightarrow V$ telle que

$$\forall (x,y) \in V \times V \ b(f(x),y) = b(x,f^*(y)).$$

Une application f^* satisfaisant les conditions ci-dessus est appelée l'adjointe de f.

Proposition 3.2.2. Voici quelques propriétés de l'application adjointe: Soit $f,g \in End(V)$ et $\lambda \in \mathbb{R}$.

- 1. $(f+g)^* = f^* + g^*$.
- 2. $(\lambda f)^* = \lambda f^*$.
- 3. $(f \circ g)^* = g^* \circ f^*$.
- 4. $(f^*)^* = f$.
- 5. Si $\mathbf{e} = (e_1, \dots, e_n)$ est une base orthonormée de V, alors

$$M_{\mathbf{e}}(f^*) = M_{\mathbf{e}}(f)^t$$
.

3.3 Produit scalaire

Soit V un \mathbb{R} -vectoriel finidimensionnel et $b:V\times V\longrightarrow \mathbb{R}$ une forme bilinéaire symétriqe non dégénérée. On dit que b est positive si $b(x,x)\geq 0$ pour tout $x\in V$. On dit alors que b est un produit scalaire et on note < x,y>=b(x,y). Un espace vectoriel muni d'un produit scalaire est appelé un espace vectoriel euclidien.

Proposition 3.3.1. $\forall (x,y) \in V^2 < x,y > \in V^2 < x,y >^2 \le < y,y > < x,x >$ Corollary 3.3.2. $Si < ... > est un produit scalaire <math>sur\ V$ alors < x,x > = 0 si

 $et \ seulement \ si \ x = 0.$

Theorem 3.3.3. Soit (V, < .,. >) un espace vectoriel euclidien et W un sous vectoriel e V. On a $V = W \oplus W^{\perp}$

Si V est un espace vectoriel euclidien on peut le munir d'une norme via $||x|| = \sqrt{\langle x,x \rangle}$ pour $x \in V$. On a donc aussi une distance sur V via d(x,y) = ||x-y|| pour $x,y \in V$.

Définition 3.3.4. Une base $\{e_1, \ldots, e_n\}$ d'un espace vectoriel euclidien est dite orthonormée si $\langle e_i, e_j \rangle = \delta_{ij}$ pour $1 \leq i, j \leq n$.

un espace vectoriel euclidien admet toujours une base othonormée.

3.4 Opérateurs orthogonaux

Les opérateurs de la géométrie vectoriel euclidienne sont les opérateurs orthogonaux. On en donne quelques caractérisations ci-dessous :

Theorem 3.4.1. Soit V, < .,. > un espace vectoriel euclidien et $u : V \longrightarrow V$ une application. Les affirmations suivantes sont équivalentes :

- 1. Pour tout $(x,y) \in V^2$, < u(x), u(y) > = < x, y >
- 2. u est linéaire et applique toute base orthonormale sur une base orthonormale.
- 3. u est linéaire et applique une base orthonormale sur une base orthonormale.
- 4. u est linéaire et pour tout $x \in V ||u(x)|| = ||x||$.
- 5. u est linéaire et pour tout $x,y \in V$ d(u(x),u(y)) = d(x,y).
- 6. u est linéaire et $u \circ u^* = u^* \circ u = id_V$.

Définition 3.4.2. Soit V un vectoriel euclidien. Une application $u:V\longrightarrow V$ est orthogonal si elle vérifie les conditions ci-dessus. L'ensemble des opérateurs orthogonaux de V est noté O(V).

Proposition 3.4.3. *1.* Si $u \in O(V)$ alors $det(u) \in \{1, -1\}$.

- 2. Les opérateurs orthogonaux constituent un sous-groupe de GL(V) noté O(V).
- 3. L'application de det : $O(V) \longrightarrow \{1, -1\}$ est un morphisme de groupes dont le noyau (qui est donc un sous-groupe normal de O(V)) est noté $O^+(V)$.

Définition 3.4.4. Les éléments de $O^+(V)$ sont appelés les rotations de V.

Exercice 3.4.5 Soient V un vectoriel euclidien de dimension 2 et $\phi \in O^+(V)$, alors il existe une base orthonormée \mathcal{B} de V et un réel $0 \le \theta < 2\pi$ tels que la matrice associée à ϕ soit

$$M_{\mathcal{B}}(\phi) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

Définitions 3.4.6. Soient F,Z deux sous-espaces d'un vectoriel euclidien V tels que V=F oplus Z. Une symétrie de base F et de direction Z est une application $u:V\longrightarrow V$ telle que u(f+z)=f-z pour $(f,z)\in F\times Z$.

- 1. Si $V = F \perp Z$ u est appelé symétrie orthogonale par rapport à F.
- 2. Si $V = F \perp Z$ et si dim(F) = dim(V) 1u est appelé une réflexion.
- 3. Si $V = F \perp Z$ et si dim(F) = dim(V) 2u est appelé un retournement (si $\dim(V)=3$ on dit aussi demi-tour).

Bien sur, les symétries orthogonales appartiennet à O(V). Les retournements appartiennent à $O^+(V)$.

Lemma 3.4.7. Soient V un vectoriel euclidien eta, $b \in V$. Si ||a|| = ||b|| alors il existe une unique réflexion s telle que s(a) = b.

Theorem 3.4.8. (Cartan) Soit V un vectoriel euclidien. Tout opérateur orthogonal peut s'écrire comme produit d'au plus n = dim(V) réflexions.

Remarques 3.4.9. 1. Il n'y a pas unicité de la décomposition énoncée dans le théorème ci-dessus.

- 2. Il y a unicité de la parité du nombre de réflexions utilisées pour décomposer un opérateur orthogonale.
- 3. u est une rotation si et seulement si u peut se décomposer en un nombre pair de réflexions.

3.5 Similitudes

Définition 3.5.1. Soit V un vectoriel euclidien, $u:V\longrightarrow V$ une application linéaire et $\lambda\in\mathbb{R},\lambda>0$. u est une similatude de rapport λ si

$$\forall \{x,y\} \in V^2 \quad < u(x), u(y) >= \lambda^2 < x,y >$$

Exemples 3.5.2. 1. Les applications orthogonales sont exactement les similitudes de rapport 1.

2. Toute homothétie de rapport μ est une similitude de rapport $|\mu|$.

Exercices 3.5.3

Soit $u:V\longrightarrow V$ une application d'un espace vectoriel euclidien dans lui-même. Montrer que les affirmations suivantes sont équivalentes:

- i) u est une similitude de rapport λ .
- ii) u est linéaire et $\forall x \in V ||u(x)|| = \lambda ||x||$.
- iii) u est linéaire et $\forall (x,y) \in V^2 d(u(x),u(y)) = \lambda d(x,y)$.
- iV) u est linéaire et $u^* \circ u = u \circ u^* = \lambda^2 i d_V$.

Proposition 3.5.4. Soit V un vectoriel euclidien de dimension ≥ 2 et $0 \neq u$ une application linéaire de V dans lui-même.

$$u$$
 est une similitude ssi $(\forall (x,y) \in V^2, x \perp y \Rightarrow u(x) \perp u(y))$

Géométrie affine euclidienne

4.1 Définitions

- **Définition 4.1.1.** a) Un espace affine euclidien est un espace affine E dont la direction \overrightarrow{E} est un espace vecoriel euclidien. Le produit scalaire de \overrightarrow{E} permet de munir E d'une distance: pour $(x,y) \in E^2$, on pose $d(x,y) = ||\overrightarrow{xy}||$.
 - b) Si F,G sont des sous-espaces affines de l'espace euclidien E, F et G sont orthogonaux si $\overrightarrow{F} \subseteq \overrightarrow{G}^{\perp}$.
 - c) On appelle projection orthogonale de E sur F, la projection de E parallèlement à $\overrightarrow{F}^{\perp}$.
 - c) On appelle symétrie orthogonale par rapport à F la symétrie par rapport à F parallèlement à $\overrightarrow{F}^{\perp}$. Si codim(F)=1, la symétrie orthogonale est appelée réflexion d'hyperplan F. Si codim(F)=2 la symétrie orthogonale par rapport à F est un retournement.

Exercices 4.1.2

- a) Montrer que si F,G sont des sous-espaces de l'espace affine euclidien E, alors $\overrightarrow{F} \subseteq \overrightarrow{G}^{\perp}ssi\overrightarrow{G} \subseteq \overrightarrow{F}^{\perp}$.
- b) Soit \overline{E} un espace affine euclidien de dimension 3 et $\mathcal{R} = (O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un repère affine orthonormée.
- 1) Pour tout $(a,b,c,d,) \in \mathbb{R}^4$ tel que $(a,b,c) \neq (0,0,0)$ le vecteur $\overrightarrow{u} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$ est orthogonal au plan d'équation ax + by + cz + d = 0.
- 2) Une équation cartésienne du plan P orthogonale à $\overrightarrow{u} = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}$ et passant par $M_0(x_0, y_0, z_0)$ est

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

3) Soit ax + by + cz + d = 0 une équation cartésienne d'un plan P et $M_0(x_0, y_0, z_0)$ un point de E. Si H(X, Y, Z) désigne la projection orthogonale de

 H_0 sur P, on a

$$\begin{cases} X = x_0 - \frac{ax_0 + by_0 + cz_0 + d}{a^2 + b^2 + c^2} a \\ Y = y_0 - \frac{ax_0 + by_0 + cz_0 + d}{a^2 + b^2 + c^2} b \\ Z = z_0 - \frac{ax_0 + by_0 + cz_0 + d}{a^2 + b^2 + c^2} c \end{cases}$$

4) Soit P un plan d'équation ax + by + cz + d = 0 et $M_0(x_0, y_0, z_0)$ un point de E, alors

$$d(M_0,P) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proposition 4.1.3. Soit E un espace affine euclidien et $u: E \longrightarrow E$, une application affine. Les affirmations suivantes sont équivalentes :

- i) u est une réflexion.
- ii) u a des points fixes et \overrightarrow{u} est une réflexion.
- iii) u est une isométrioe dont l'ensemble des points fixes est un hyperplan.

Définition 4.1.4. Soit E un espace affine euclidien et $f \in GA(E)$.

- 1. f est une similitude affine de rapport $\lambda > 0$ si \overrightarrow{f} est une similitude vectorille de rapport $\lambda > 0$.
- 2. Une similitude affine de rapport $\lambda = 1$ est appelée une isométrie affine.
- 3. Une similitude affine est dite directe si $det(\overrightarrow{f}) > 0$.
- 4. Une similitude affine est dite indirecte si $det(\overrightarrow{f}) < 0$.
- 5. Les isométries directes sont appelées des déplacements, les isométries indirectes sont appelées des antidéplacements.

4.2 Décomposition des isométries et similitudes

Lemma 4.2.1. Soit (V, < .,. >) un espace vectoriel euclidien et $u \in O(V)$, alors ker(u - id.) et Im(u - id.) sont des supplémentaires orthogonaux.

Theorem 4.2.2. Toute isométrie f d'un espace affine euclidien E peut s'écrire de manière unique sous la forme $f=t\circ g=g\circ t$ où $g\in is(E)$ telle que $F(g)\neq\emptyset$ et $t=t_{\overrightarrow{a}}$ où $\overrightarrow{a}\in F(\overrightarrow{g})$.

La décomposition ci-dessus est appelée la décomposition canonique d'une isométrie. Le résultat suivant est basée sur le théorème de Cartan (Cf. 3.4.8)

Theorem 4.2.3. Toute isométrie est un produit d'au plus n+2 réflexions où n=dim(E).

On va maintenant montrer que le groupe des des déplacements est engendré par les retournements:

Lemma 4.2.4. Soient H_1,H_2 des hyperplans d'un espace affine euclidien. Les affirmations suivantes sont équivalentes

$$i) \overrightarrow{H_1}^{\perp} \subseteq \overrightarrow{H_2}.$$

$$ii) \overrightarrow{H_2}^{\perp} \subseteq \overrightarrow{H_1}.$$

En outre, dans ce cas, $H_1 \cap H_2$ est un sous-espace de codimension 2 et on a $S_{H_1} \circ S_{H_2} = S_{H_1 \cap H_2} = S_{H_2} \circ S_{H_1}$, où S_{H_*} désigne la symétrie orthogonale par rapport au sous-espace affine H_* .

Theorem 4.2.5. Soit E un espec affine euclidien de dimension ≥ 3 , le groupe des déplacements de E est engendré par les symétries orthogonales dont l'axe est de codimension 2 (i.e. les retournements).

Proposition 4.2.6. Soit g une similitude de rapport $\lambda \neq 1$. Alors

- a) g a un unique point fixe, soit c.
- b) Soit h l'homothétie de centre c et de rapport λ . Il existe une unique isométrie f de E tel que f(c) = c et $g = h \circ f = f \circ h$.
- 4.3 Classification des isométries en dimension 2 et 3
- 4.4 Application: Groupes cristallographiques