Contrôle Continu de Géométrie 12 Avril 2016

A.U 2015-2016

Durée: 1 h 30 mn

N.B: L'usage de tout appareil électronique est strictement interdit

Exercice 1:

Considérer la courbe $\alpha: \mathbb{R} \to \mathbb{R}^2$ définie par

$$\alpha(t) = (ae^{-bt}\cos t, ae^{-bt}\sin t)$$

Où a, b > 0

- 1. Donner une limite de $\alpha(t)$ et $\alpha'(t)$ quand t tend vers $+\infty$.
- 2. Montrer que α a une longueur finie sur $[0, +\infty[$.
- 3. Reparamétriser cette courbe par longueur d'arc.

Exercice 2:

On considère la courbe paramétrée $\beta:]0,+\infty[\to \mathbb{R}^2$ définie par

$$\beta(t) = \left(\int_0^t \sqrt{1 - e^{-2u}} du, e^{-t}\right)$$

- La courbe β est-elle paramétrée par longueur d'arc ?
- 2. Soit C_p la droite tangente à la courbe β au point $p = \beta(t)$, on note q l'intersection de C_p avec l'axe (ax). Prouver que, pour tout t > 0, la distance entre p et q vaut un.
- 3. Calculer la courbure de \(\beta \) en chaque point.

Exercice 3:

Soit y la courbe paramétrée définie par

$$\gamma(t) = \left(\int_0^t \frac{(1 + ch^2 u) \cos u}{ch^2 u} du, \int_0^t \frac{(1 + ch^2 u) \sin u}{ch^2 u} du, \int_0^t \frac{(1 + ch^2 u) shu}{ch^2 u} du \right)$$

- 1. Déterminer, en un point de y, le repère de Frenet.
- 2. Calculer la courbure k et la torsion τ en un point $\gamma(t)$.
- 3. Vérifier que la fonction $\frac{k}{\tau^2 + k^2}$ est constante.