U.S.T.H.B. 2014-2015 Semestre 1 Faculté de Mathématiques

Fonctions de plusieurs variables $3^{\rm ème}$ année LAC

Test n⁰2 - 07 décembre 2014. Durée : 30 minutes

Nom:	Matricule:
Prénom :	Groupe :

Exercice 1 (5,5 pts.): Déterminer les extrema locaux des fonctions suivantes :

1)
$$f(x,y) = x^3 + y^3$$
, 2) $f(x,y,z) = x^2 + y^2 + z^4 - 2x - 2y - 4z$.

Réponse.

1)
$$f(x,y) = x^3 + y^3$$
:

Il est clair que f est de classe C^2 sur \mathbb{R}^2 . Un simple calcul donne

$$\frac{\partial f}{\partial x}(x,y) = 3x^2, \ \frac{\partial f}{\partial y}(x,y) = 3y^2,$$

$$\frac{\partial^2 f}{\partial x^2}\left(x,y\right) = 9x, \ \frac{\partial^2 f}{\partial y^2}\left(x,y\right) = 9y, \ \frac{\partial^2 f}{\partial x \partial y}\left(x,y\right) = \frac{\partial^2 f}{\partial y \partial x}\left(x,y\right) = 0.$$

Les points critiques de f sont les solutions du système $\left\{\frac{\partial f}{\partial x}\left(x,y\right)=0,\ \frac{\partial f}{\partial y}\left(x,y\right)=0\right\}$

i.e. $\{3x^2=0,\ 3y^2=0\}$. Ce système admet une unique solution qui est s=(0,0) .

En ce point critique on a $p = \frac{\partial^2 f}{\partial x^2}(0,0) = 0$, $q = \frac{\partial^2 f}{\partial x \partial y}(0,0) = 0$, $r = \frac{\partial^2 f}{\partial y^2}(0,0) = 0$ et donc $pr - q^2 = 0$.

Alors le théorème des conditions suffisantes d'existence d'un extremum ne s'applique pas.

On remarque que pour t > 0 au voisinage de 0 :

$$f(t,0) = t^3 > 0 = f(0,0)$$
 et $f(-t,0) = -t^3 < 0 = f(0,0)$.

Par conséquent le point critique s = (0,0) ne figure pas un extremum pour la fonction f.

2)
$$f(x,y,z) = x^2 + y^2 + z^4 - 2x - 2y - 4z$$
:

La fonction f est de classe C^2 sur \mathbb{R}^3 et on a

$$\frac{\partial f}{\partial x}\left(x,y,z\right)=2x-2,\ \frac{\partial f}{\partial y}\left(x,y,z\right)=2y-2,\ \frac{\partial f}{\partial z}\left(x,y,z\right)=4z^{3}-4,$$

$$\frac{\partial^2 f}{\partial x^2}\left(x,y,z\right) = 2, \quad \frac{\partial^2 f}{\partial y^2}\left(x,y,z\right) = 2, \quad \frac{\partial^2 f}{\partial z^2}\left(x,y,z\right) = 12z^2,$$

$$\frac{\partial^{2} f}{\partial x \partial y}\left(x,y,z\right) = \frac{\partial^{2} f}{\partial x \partial z}\left(x,y,z\right) = \frac{\partial^{2} f}{\partial y \partial z}\left(x,y,z\right) = 0.$$

Les points critiques de f sont les solutions du système $\{2x - 2 = 0, 2y - 2 = 0, 4z^3 - 4 = 0\}$. D'où la fonction f possède un seul point critique s = (1, 1, 1).

La matrice hessienne de f en s = (1, 1, 1) est

$$H(1,1,1) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 12 \end{bmatrix}.$$

Les valeurs propres de cette matrice sont $\lambda_1 = 2, \lambda_2 = 2, \lambda_3 = 12$. Comme ils sont tous strictement positives, alors f admet un minimum local au point s = (1, 1, 1).

Exercice 2 (3,5 pts.) : Déterminer les valeurs de a pour lesquelles f admet un minimum local où $f(x,y) = x^3 + y^2 - 3ax - 2y$.

Réponse.

La fonction f est de classe C^2 sur \mathbb{R}^2 et on a

$$\frac{\partial f}{\partial x}(x,y) = 3x^2 - 3a, \ \frac{\partial f}{\partial y}(x,y) = 2y - 2,$$

$$p = \frac{\partial^2 f}{\partial x^2}(x, y) = 6x, \ r = \frac{\partial^2 f}{\partial u^2}(x, y) = 2, \ q = \frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial u \partial x}(x, y) = 0.$$

Les points critiques de f sont les solutions du système $\left\{\frac{\partial f}{\partial x}\left(x,y\right)=0,\ \frac{\partial f}{\partial y}\left(x,y\right)=0\right\}$

i.e. $\{3x^2 - 3a = 0, 2y - 2 = 0\}$. Si a < 0, la fonction f n'a aucun point critique.

Si a=0, la fonction f admet un seul point critique s=(0,1). En ce point critique on a $pr-q^2=0$ et la fonction f n'a aucun extremum car pour t>0, $f(t,1)=t^3-1>-1=f(0,1)$ et $f(-t,1)=-t^3-1<-1=f(0,1)$.

Si a > 0, la fonction f admet deux points critiques $s_1 = (-\sqrt{a}, 1)$ et $s_2 = (\sqrt{a}, 1)$.

En $s_1 = (-\sqrt{a}, 1)$ on a $pr - q^2 = -12\sqrt{a} < 0$. Donc la fonction f n'admet en s_1 ni maximum ni minimum local, mais un point selle.

En $s_2 = (\sqrt{a}, 1)$ on a $pr - q^2 = 12\sqrt{a} > 0$. Donc la fonction f admet un minimum local au point $s_2 = (\sqrt{a}, 1)$.

On en conclut que f possède un minimum local si et seulement si a > 0.

Exercice 3 (6 pts.): Soit le domaine $D = \{(x, y) \in \mathbb{R}^2 / 0 \le x \le 2, 0 \le y - x \le 2\}.$

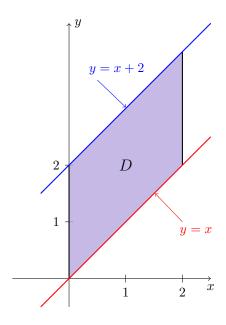
1) Dessiner le domaine D. 2) Déterminer les bornes de l'intégrale $\iint_D f(x,y) dxdy$.

3) En déduire l'aire de D.

Réponse.

1) Le domaine d'intégration D s'exprime sous la forme

$$D = \{(x, y) \in \mathbb{R}^2 / \ 0 \le x \le 2, \ x \le y \le x + 2 \}.$$



2) En appliquant le théorème de Fubini on obtient

$$\iint\limits_{D} f(x,y) \, dx dy = \int\limits_{0}^{2} \left(\int\limits_{x}^{x+2} f(x,y) \, dy \right) dx.$$

3) Lorsque f est la fonction constante qui vaut 1, l'intégrale $I = \iint_D 1 dx dy = Aire(D)$ représente l'aire, ou la surface du domaine D.

Par conséquent

Aire (D) =
$$\int_{0}^{2} \left(\int_{x}^{x+2} 1 dy \right) dx = \int_{0}^{2} \left([y]_{x}^{x+2} \right) dx = \int_{0}^{2} 2 dx = [2x]_{0}^{2} = 4.$$