Université A. Belkaid TLEMCEN Faculté de Technologie, Dpt Génie Civil

Janvier 2018 Durée: 1h30 mn

EXAMEN FINAL Théorie d'élasticité M1 CMM et VOA

Toute documentation est non autorisée

QUESTIONS DE COURS (4.00 pts)

(2.00 Pts) 1) Pour des contraintes principales σ_1 , σ_2 et σ_3 , définir l'état de contrainte pour les cas suivants :

i)
$$\sigma_1 = \sigma_2 = \sigma_3 \neq 0$$

ii)
$$\sigma_1 > 0$$
, $\sigma_2 > 0$ et $\sigma_3 = 0$

ii)
$$\sigma_1 = -\sigma_2 \ et \ \sigma_3 = 0$$

ii)
$$\sigma_1 > 0$$
, $\sigma_2 = \sigma_3 = 0$

(2.00 Pts) 2) Montrer que dans le cas d'un tenseur de contraintes tridimensionnel, les contraintes principales sont déterminées par la solution de l'équation :

$$Det \begin{bmatrix} \sigma_{x} - \sigma & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{y} - \sigma & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{z} - \sigma \end{bmatrix} = 0$$

EXERCICE I (9.00 pts)

En un point donné d'un milieu élastique, le tenseur des contraintes est donné par ce qui suit :

$$[\sigma]_M = \begin{bmatrix} 0 & 0 & \alpha \\ 0 & 0 & -\alpha \\ \alpha & -\alpha & 0 \end{bmatrix}$$

Avec : α une constante

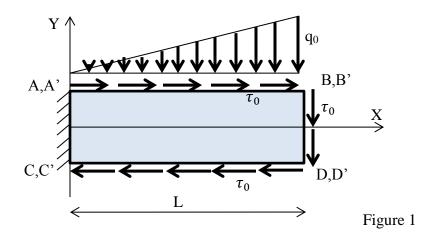
- (1.00 Pts) i) A quelle condition les équations d'équilibre seront-elles satisfaites si le milieu est en équilibre statique ?
- (3.50 Pts) ii) Déterminer les contraintes et directions principales de ce tenseur.
- (1.00 Pt) iii) Calculer la valeur de la contrainte de cisaillement maximale.
- (3.50 Pts) iv) Dans le plan (σ_n, τ) , tracer les cercles de Mohr de l'état de contrainte en un point quelconque.

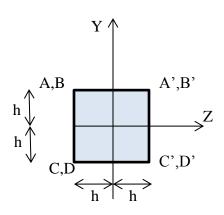
Représenter sur ces cercles de Mohr, le vecteur contrainte appartenant à la facette dont la normale est la bissectrice du plan (x,z) positif.

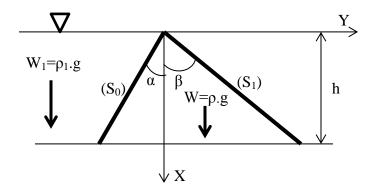
EXERCICE II (7.00 pts)

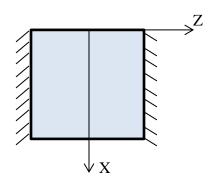
On vous demande d'écrire toutes les conditions aux limites en contraintes pour les deux cas suivants :

- (3.50 Pts) Cas I: Il s'agit d'une poutre console de longueur « L » et de section transversale (2h x 2h) soumise à un cisaillement uniforme τ_0 sur les faces ABB'A'; BDD'B' et CDD'C' et à une charge décroissante linéairement de « q_0 » à « 0 » sur la face ABB'A' (Voir figure 1).
- (3.50 Pts) Cas II: Il s'agit d'un massif prismatique en béton qui sert à retenir l'eau limité à l'amont par le plan (S_0) faisant un angle « α » avec l'axe des « x » et à l'aval par le plan (S_1) faisant un angle « β » avec l'axe des « x » (voir figure 2)









 ρ_1 : masse volumique de l'eau ρ : masse volumique du béton

Figure 2

BON COURAGE Pr Abdellatif MEGNOUNIF

$$Cotain to et directions principals$$

$$\left(CoJ - \sigma(I) \right) \left(\frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[CoJ - o(I) \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right) = 0 \quad \text{and} \quad \left[\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} \right] = 0$$

$$\left(\frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} - \frac{d}{dt} -$$

$$O = G_{2} = 0$$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -d \end{pmatrix} \begin{pmatrix} k_{2} \\ m_{2} \\ 1_{2} \end{pmatrix} = 0 \text{ in } \begin{cases} dn_{2} = 0 \\ -dn_{2} = 0 \end{cases}$$

$$dn_{2} = 0$$

$$dn_{3} = 0$$

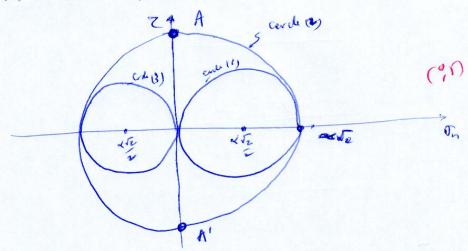
$$dn_{4} =$$

'Is demoninatens post bospus postly- por quil' (n') it in' "ried postlys (il faul quils numeridans sout postlys Shil: $(C_n - C_n)(C_n - C_n) > 3$ $(C_n - C_n)(C_n - C_n) > 3$ $(C_n - C_n)(C_n - C_n) > 3$

On put respire as inegation rous le fone surante $\left(\frac{7^2 + (G_n - \frac{G_1 + G_3}{2})^2}{2} \right) \left(\frac{G_2 - G_3}{2} \right)^2$ $\left(\frac{7^2 + (G_n - \frac{G_3 + G_1}{2})^2}{2} \right) \left(\frac{G_1 - G_1}{2} \right)^2$ $\left(\frac{7^2 + (G_n - \frac{G_1 + G_2}{2})^2}{2} \right) \left(\frac{G_1 - G_2}{2} \right)^2$ $\left(\frac{7^2 + (G_n - \frac{G_1 + G_2}{2})^2}{2} \right) \left(\frac{G_1 - G_2}{2} \right)^2$

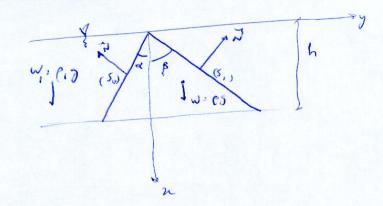
Das le reper (6,7), por a sul de cqs. de arche
12 arde : contre ouros et rayor of 5. 6;
2: cerde : cole ouros et rayor of 5. 6;
3º cerde : certer ouros et rayor of 6. 6;
3º cerde : certer ouros et rayor of 6. 6;
3º cerde : certer ouros ouros ouros ouros ouros.

Ains: ower Tie - dte : Ties et Tie de a ara



Replisate or cetricele, le pout appartirant à le facille dut la unmale it la bistacture du pla (1,3) postingbrishedia (43) posity of 1:4/2; n=0, n= 52 or 6, 2 l'6, + m' 5, +n'6, N Z= 52-62 = (512+ 52+ 52) - (25, + m 5, + m 5) ave fiz -dr. Food G= XTI V (2+=; m=set n2 12 m To 20 pint our figure To 2 det A. prints A of A. E· してg·m Tyj+n 5 ⊙ Face AA'BB' ogn&L; y=+h, hig≤h 1 = Gy = 90 2 (1.0) 2 = 78 = 0

$$|\vec{x}, -\tau_{y}| = -\tau_{0}$$
 $|\vec{\tau}| = -\tau_{y} = 0$
 $|\vec{\tau}| = -\tau_{y} = 0$
 $|\vec{\tau}| = -\tau_{y} = 0$



(So) equation de la devile (S.) y+tgd n = 0 lingle = 37 -d $m_{\beta} l = los \left(\frac{3\pi}{2} - d\right) = - los d$ $los los \left(\frac{3\pi}{2} - d\right) = - los d$ \ \frac{1}{7.62y+may+nay+nay} = \ \frac{1}{2.62y+may+nay+nay} = \ \frac{1}{2.62y+may+nay} = \land{2} on A das le plan vij n I 2 l Gart mileg d'- } - Sind On - Good Tay = X - Sind Tay - Good Gy = 7 la premia de l'en a jælegn sind (72 Pign cosd nj- hind Tu- bood Tay = pign sind (- in d Ty - word Gy? Prgn cord " tgd (Out lag") + Tay = 0 (1, 15) 52 T-y + (Gy- (,gw)=0 O Sur (S.) larghe = T+B = P = Sin(T+B) = - Sin B

ma Sin(T+B) = Coop to p on - Tay = 0 5 p Tay - og =0 (1,20)

0