USTHB 2017-2018 Semestre 1 Faculté de Mathématiques

Équations différentielles 3^{ème} année LAC

Série d'exercices n° 2 : Équations différentielles du premier ordre

Exercice 1 : (Variables séparées)

Résoudre les équations différentielles suivantes :

a)
$$y' = y^{\alpha}, \alpha \in \mathbb{R}$$
,

b)
$$y' = (1 - y) y$$
,

b)
$$y' = (1 - y) y$$
, **c)** $y' = \operatorname{tg}(t) y$, $y(0) = 1$,

d)
$$y' = \frac{\pi}{4}\cos(t)(1+y^2)$$

e)
$$y' = t\sqrt{1 - y^2}$$

d)
$$y' = \frac{\pi}{4}\cos(t)(1+y^2)$$
, **e)** $y' = t\sqrt{1-y^2}$, **f)** $t^3y'\sin y = 2$, $\lim_{t \to +\infty} y(t) = \frac{\pi}{2}$,

g)
$$y'\sqrt{1-t^2} + ty = 0$$
,

h)
$$(1-y^2)y'=y$$

g)
$$y'\sqrt{1-t^2}+ty=0$$
, **h)** $(1-y^2)y'=y$, **I)** $ty'+y\log y=0$, $y(1)=1$.

Exercice 2 : (Équations type-homogènes)

Résoudre les équations différentielles suivantes :

a)
$$4yy' + t = 0$$
,

a)
$$4yy' + t = 0$$
, **b)** $(t - y)y' + 2t + 3y = 0$, **c)** $t^2y' = y^2$,

c)
$$t^2y' = y^2$$

$$\mathbf{d)} \ ty' = y - t.$$

d)
$$ty' = y - t$$
, **e)** $ty' = y + \sqrt{y^2 - t^2}$, **f)** $ty' = y + t \cos^2 \frac{y}{t}$.

f)
$$ty' = y + t \cos^2 \frac{y}{t}$$
.

Exercice 3 : (Équations aux différentielles totales, facteur intégrant)

Intégrer les équations différentielles suivantes :

a)
$$(t^2y + y^3)y' + t^3 + ty^2 = 0$$

a)
$$(t^2y + y^3)y' + t^3 + ty^2 = 0$$
, **b)** $y(t^2 + 2y^2)y' + t(2t^2 + y^2) = 0$,

c)
$$2tyy' = t + y^2$$
, $\mu(t, y) = \varphi(t)$

c)
$$2tyy' = t + y^2$$
, $\mu(t, y) = \varphi(t)$ **d)** $(t + 4ty + 5y^2)y' + 3t + 2y + y^2$, $\mu(t, y) = \varphi(t + y^2)$.

Exercice 4: (Équations différentielles linéaires)

Résoudre les équations différentielles suivantes :

a)
$$y' + y = \cos t$$
, **b)** $y' + 2ty = 4t$,

b)
$$y' + 2ty = 4t$$
,

c)
$$y' - y = e^{\alpha t}, \alpha \in \mathbb{R},$$

d)
$$y' - 2ty = 2te^{t^2}$$

e)
$$(t-2)y' = y + 2(t-2)^2$$
,

d)
$$y' - 2ty = 2te^{t^2}$$
, **e)** $(t-2)y' = y + 2(t-2)^2$, **f)** $(1+t^2)y' = 2ty + 5(1+t^2)$,

g)
$$y' + y = e^{-t}$$
, $y(0) = 0$

h)
$$2ty' + y = 1$$
, $y(1) = 2$

g)
$$y' + y = e^{-t}$$
, $y(0) = 0$, **h)** $2ty' + y = 1$, $y(1) = 2$, **I)** $y' \cos t - y \sin t = 2t$, $y(0) = 0$.

Exercice 5 : (Équations de Bernoulli, Ricatti et Lagrange)

Résoudre les équations différentielles suivantes :

a)
$$y' = y - \sqrt{y}$$
,

a)
$$y' = y - \sqrt{y}$$
, **c)** $y' = y^2 + ty + 1$, **e)** $y = ty' - (y')^3$,

e)
$$y = ty' - (y')^3$$

b)
$$(t^3+1)y'=3t^2y-ty^3$$

b)
$$(t^3+1)y'=3t^2y-ty^3$$
, **d)** $(t^3-1)y'=y^2+t^2y-2t$, **f)** $y=t(1+y')-(y')^2$.

f)
$$y = t(1 + y') - (y')^2$$
.

Exercice 6:

Résoudre les équations différentielles suivantes :

a)
$$y' - \left(2t - \frac{1}{t}\right)y = 1$$

c)
$$y' - y = t^k e^t, k \in \mathbb{N},$$

a)
$$y' - \left(2t - \frac{1}{t}\right)y = 1$$
, **c)** $y' - y = t^k e^t$, $k \in \mathbb{N}$, **c)** $t(1 + \log^2 t)y' + 2(\log t)y = 1$,

d)
$$ty' + y - ty^3 = 0$$

d)
$$ty' + y - ty^3 = 0$$
, **e)** $t^2(y^2 + y') = ty - 1$, **f)** $t^2y' = t^2y^2 + ty + 1$,

f)
$$t^2y' = t^2y^2 + ty + 1$$
,

g)
$$y = \frac{3}{2}ty' + e^{y'}$$
, h) $y = (y'-1)e^{y'}$, i) $ty' = t^2 + y$,

h)
$$y = (y' - 1) e^{y'}$$

i)
$$ty' = t^2 + y$$
,

j)
$$(t^3 + e^y)y' = 3t^2$$
, **k)** $ty' = y - t$,

k)
$$tu' = u - t$$

1)
$$y' \sin t = y \operatorname{Log} y$$
.

Exercice 7:

Déterminer, sans résoudre l'équation, le lieu des extrema des solutions de y' = ty - 1.

Dans quelle région du plan sont-elles croissantes, décroissantes?

Exercice 8:

On considère la famille de courbes (C_{λ}) d'équation générale $t^2 + 3y^2 - 3 = \lambda y$, $\lambda \in \mathbb{R}$.

- a) Préciser la nature des courbes (C_{λ}) .
- b) Déterminer l'équation différentielle pour cette famille.
- c) En déduire l'équation différentielle de la famille de courbes orthogonales puis l'équation générale de ces courbes.

Exercice 9:

Montrer que la substitution $y = \frac{s}{t}$ réduit l'équation différentielle (1 - ty) y = t (1 + ty) y' à une équation à variables séparables. Résoudre cette équation.

Exercice 10: (Dynamique des populations)

On s'intéresse à l'évolution d'une population. Soient y(t) le nombre d'individus de cette population et $k(t) = \frac{y'(t)}{y(t)}$ le taux de croissance de cette population au temps t. Étudier l'évolution de cette population au cours du temps dans les cas suivants :

- a) k est constant.
- b) k = y. Montrer alors que la solution explose en temps fini.
- c) k = a by. Montrer que y converge.