

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

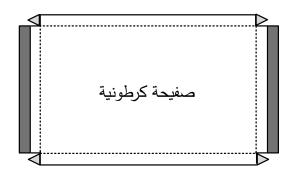
وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضي

المدة: 04 سا و 30 د

اختبار في مادة: التكنولوجيا (هندسة كهربائية)

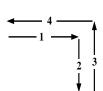
على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول نظام آلي لتشكيل أغطية علب


يحتوي هذا الموضوع على 10 صفحات:

- العرض: من الصفحة 1/20 إلى الصفحة 20/7
 - العمل المطلوب: الصفحة 20/8.
- وثائق الإجابة: من الصفحة 9/20 إلى الصفحة 20/10.

دفتر الشروط

-1 هدف التألية: يهدف النظام إلى تشكيل أغطية العلب المستعملة في مصانع الملابس بكمية كبيرة وفي وقت قصير.


-2 وصف الكيفية: عند بدء التشغيل تُمسك صفيحة كرطونية (الشكل 1) ثم تُحوّل إلى مركز الطي. بعدها يتم تشكيل الجوانب الأربعة و طَيُّ الجزء المزود بالمادة اللاصقة بزاوية °180 على مرحلتين (°90 بالرافعات E و + E و + E و + E التم عملية اللصق، ثم يتم إخلاء الغطاء المشكّل.

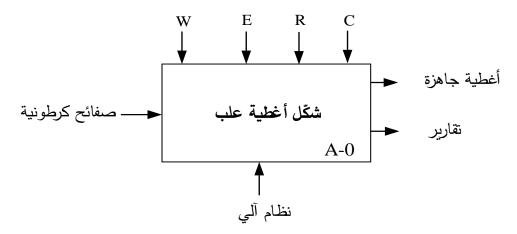
. الجزء المزود بالمادة اللاصقة.

----: حدود الطي المُشكّلة مُسبقا.

الشكل 1

. الضغط على b_1 يؤدي إلى تحرير الصفيحة من الساحبة الهوائية V (Ventouse) عن طريق dV^- للموزع b

3- الأمن: حسب القوانين المعمول بها.


4- الاستغلال: يتطلب تشغيل النظام عاملين:

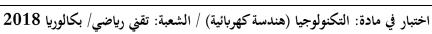
- عامل مختص: للتشغيل والصيانة والمراقبة.

- عامل غير مختص: لتزويد النظام بالصفائح والتنظيف.

5 - التحليل الوظيفي:

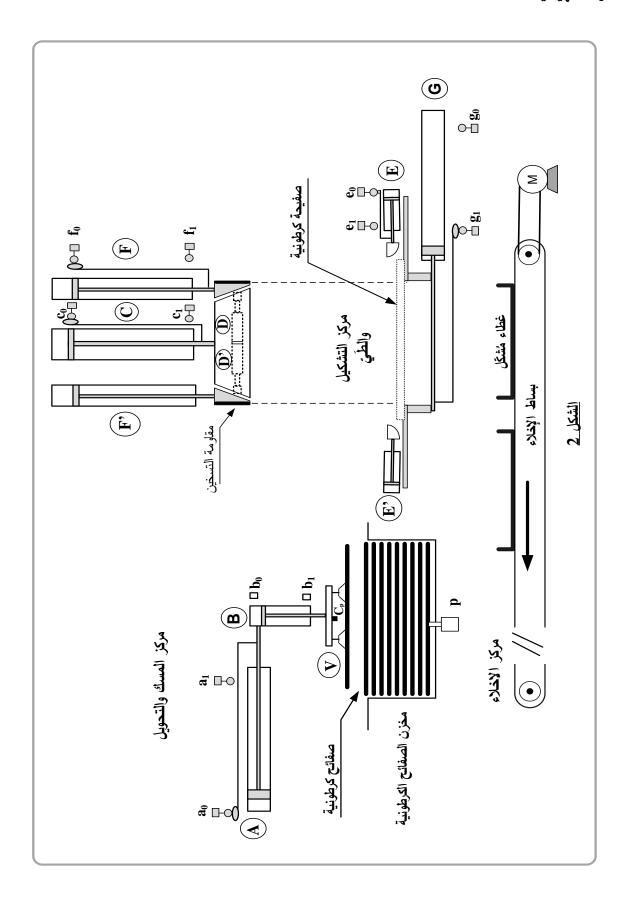
الوظيفة الشاملة: النشاط البياني A-0

W: طاقة كهربائية + طاقة هوائية.


E : تعليمات الاستغلال.

R: الضبط.

: الإعدادات.

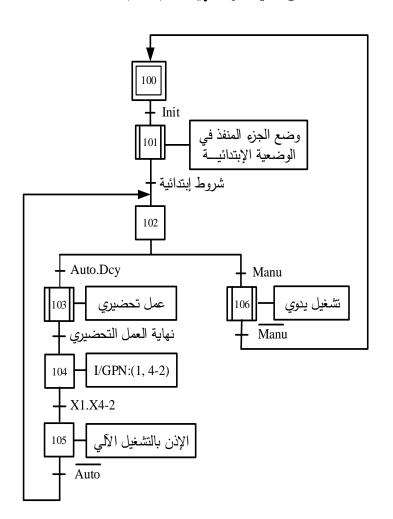

التحليل الوظيفي التنازلي: ينقسم النظام إلى 4 أشغولات:

- الأشغولة 1: المسك (مسك الصفيحة الكرطونية).
- الأشغولة 2: التحويل (تحويل الصفيحة إلى مركز التشكيل والطّيّ).
- الأشغولة 3: التشكيل والطّي (تشكيل وطّيّ جوانب الصفيحة للصق).
 - الأشغولة 4: الإخلاء (إخلاء الغطاء المُشكّل).

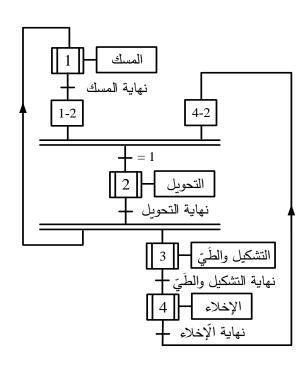
6- المناولة الهيكلية

الملتقطات	المنفذات المتصدرة	االمنفذات	الأشغولة
b ₁ , b ₀ : ملتقطات نهاية	+dB : موزع 5/2 ثنائي	B: رافعة مزدوجة المفعول.	
شوط.	الاستقرار كهروهوائي ~24V.	V: ساحبة هوائية (Ventouse).	المسك
cp: كاشف جوار سعوي.	+dV : موزع 5/2 ثنائي		(تمثیت
	الاستقرار كهروهوائي ~24V.		
ملتقطات نهایة: a_1 , a_0	†dA- , dA : موزع 5/2 ثنائي	 A: رافعة مزدوجة المفعول. 	
شوط.	الاستقرار كهروهوائي ~24V.	B: رافعة مزدوجة المفعول.	
ملتقطات نهایة: $b_1 \cdot b_0$	+ dB · , dB ن موزع 5/2 ثنائي	V: ساحبة هوائية (Ventouse).	التحويل
شوط.	الاستقرار كهروهوائي ~24V.		التعويل
	-dV ⁻ , dV : موزع 5/2 ثنائي		
	الاستقرار كهروهوائي ~24V.		
ملتقطات نهایة: c_1 , c_0	+ dC · موزع 5/2 ثنائي : dC ثنائي	C: رافعة مزدوجة المفعول لنزول وصعود أداة	
شوط.	الاستقرار كهروهوائي ~24V.	تشكيل الجوانب.	
. ملتقط نهاية شوط : ${ m d}_1$	dD : موزع 2/ 3 أحادي الاستقرار	D و D : رافعات بسيطة المفعول لتثبيت	
ملتقطات نهایة : e_1 , e_0	كهروهوائي ~24V.	الجوانب عموديا.	
شوط.	'dE ⁻ , dE : موزع 5/2 ثنائي	'E و E: رافعات مزدوجة المفعول لطي الجوانب	التشكيل
ملتقطات نهایة : f_1 , f_0	الاستقرار كهروهوائي ~24V.	.90° ب	والطَيّ
شوط.	'dF-, dF : موزع 5/2 ثنائي	'F و F: رافعات مزدوجة المفعول لطي الجوانب	
زمن اللصق. $t_{ m I}$ = 2s	الاستقرار كهروهوائي ~24V.	ب °180°	
	KR : ملامس كهرومغناطيسي	2×R _{ch} : مقاومات التسخين لتفعيل مادة	
	~24 V للتحكم في 24 V.	اللصق.	
ملتقطات نهایة : g_1,g_0	'dG⁻ , dG شائي :dG موزع	G: رافعة مزدوجة المفعول.	
شوط.	الاستقرار كهروهوائي ~24V.	M: محرك التزامني ~ 3 لتدوير بساط	الإخلاء
t ₂ = 18s: زمن دوران	KM : ملامس كهرومغناطيسي	الإخلاء.	, <u>, , , , , , , , , , , , , , , , , , </u>
البساط.	.24 V~		
إعادة التسليح	لحماية المحرك Mea ، Mez : زر	التوقف الاستعجالي ، RT: مرحل حراري	AU : زر ا

Auto / Manu : مبدلة اختيار نمط التشغيل يدوي أو آلي ، اnit: زر لوضع الجزء المنفذ في الوضعية الإبتدائية

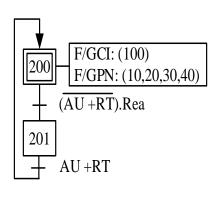

p: ملتقط يكشف عن نفاذ الصفائح الكرطونية من الخزان ، Dcy: زر بداية الدورة.

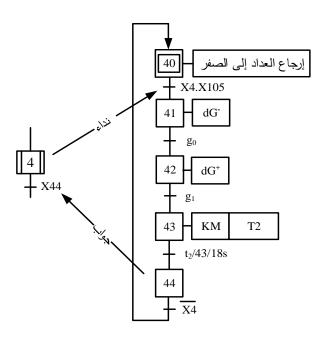
شبكة التغذية: 220/380V ; 50Hz



8 – المناولة الزمنية

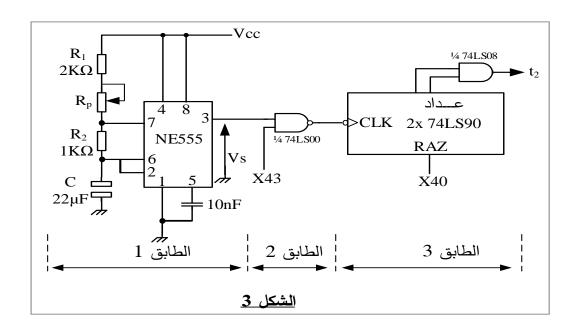
متمن القيادة و التهيئة: (GCI)

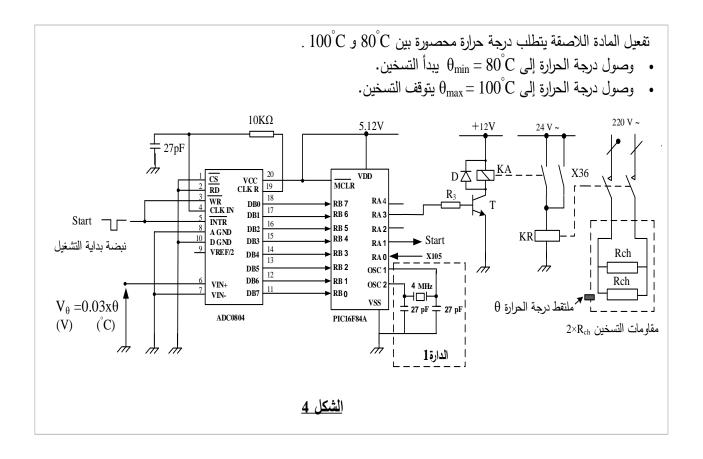



متمن تنسيق الأشغولات: (GCT)

متمن الأشغولة 4: (الإخلاء)

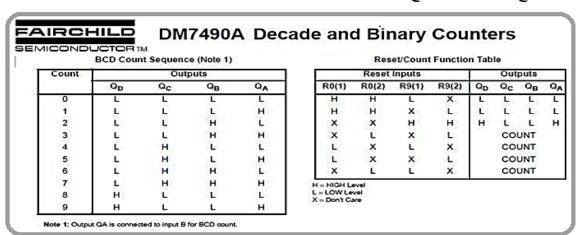
متمن الأمن: (GS)





9- الإنجازات التكنولوجية

دارة المؤجلة ${f T2}$: للحصول على تأجيل قدره ${f t_2}=18$ استعملنا مؤجلة ذات عداد تصاعدي كما يبينه الشكل التالى:


دارة مراقبة درجة حرارة التسخين: لمراقبة درجة حرارة تفعيل المادة اللاصقة استعملنا البنية المبرمجة التالية:

10- ملحق

وثيقة 1: مستخرج من وثائق الصانع للدارة المندمجة 74LS90:

وثيقة2: مستخرج من وثائق الصانع للميكرومراقب 16F84A:

Mic	CROCH	IP 🔽	Š.						PIC	16F8	4A
SPEC	IAL FUNCT	ION REG	ISTER F	ILE SUI	MMARY						
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on RESET	Details on pag
Bank	0			•				•			
05h	PORTA ⁽⁴⁾	_		_	RA4/T0CKI	RA3	RA2	RA1	RAO	x xxxx	16
06h	PORTB(6)	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0/INT	XXXX XXXX	18
Bank	1						•	•			
85h	TRISA	-	-	-	PORTA Data	Direction	Register			1 1111	16
86h	TRISB	PORTB Data Direction Register 1111 11:						1111 1111	18		

PORTA and TRISA Registers

PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

PORTB and TRISB Registers

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

وثيقة 3: مستخرج من وثائق الصانع للمحركات اللاتزامنية ثلاثية الطور:

IP 55 - 50 Hz - Classe F - 230 V A / 400 V Y - S1

	Puissance nominale a 50 Hz	Vitesse nominale	Couple nominal	Intensité nominale	Facteur de puissance	Rendement	Courant demarrage / Courant nominal	Masse
Туре	P _N KW	N _N min ⁻¹	C _N	IN(400V)	C08 @	7 %	I _D /I _N	IM B3
LS 56 L	0.09	1400	0.6	0.39	0.6	55	3.2	4
LS 63 M	0.12	1380	0.8	0.44	0.7	56	3.2	4.8
LS 63 M ²	0.12	1375	0.8	0.44	0.77	56	3	4.8
LS 63 M	0.18	1390	1.2	0.64	0.65	62	3.7	5
LS 63 M ²	0.18	1410	1.2	0.62	0.75	63	3.7	5
LS 63 M	0.25	1390	1.6	0.85	0.65	65	4	5.1
LS 63 M	0.25	1390	1.6	0.85	0.65	65	4	5.1
LS 71 L	0.25	1425	1.7	0.8	0.65	69	4.6	6.4
LS 71 L	0.37	1420	2.5	1.06	0.7	72	4.9	7.3
LS 71 L	0.55	1400	3.8	1.62	0.7	70	4.8	8.3
LS 80 L	0.55	1400	3.8	1.6	0.74	67	4.4	8.2
LS 80 L	0.75	1400	5.1	2.01	0.77	70	4.5	9.3
LS 80 L	0.9	1425	6	2.44	0.73	73	5.8	10.9

(extrait catalogue LEROY SOMER)

العمل المطلوب

س1: أكمل التحليل الوظيفي التنازلي (النشاط البياني A0) على وثيقة الإجابة 1 (الصفحة 20/9).

س2: أنشئ متمن من وجهة نظر جزء التحكم للأشغولة 2 (التحويل).

س3: أكتب على شكل جدول معادلات التنشيط و التخميل والأفعال لمراحل متمن الأشغولة 4 (الإخلاء) .

س4: أكمل ربط المعقب الكهربائي ودارة المنفذات المتصدرة للأشغولة 4 على وثيقة الإجابة 1 (الصفحة 20/9).

• دارة المؤجلة T2: شكل3 (الصفحة 20/6).

س5: حدد دور كل من الإشارتين X40, X43.

س6: حدد البُنَى (الهياكل) المادية التي تُنشئ الوظائف التالية: الإذن بالتأجيل ، توليد إشارة الساعة ، التأجيل.

 $R_{P}=16~{
m K}\Omega$ أحسب دور إشارة التوقيتية من أجل R

س8: أحسب النسبة الدورية (σ) الموافقة.

مستعينا بالوثيقة 1 (الصفحة 20/7):

 \mathbf{w} : استنتج الحالة المنطقية لمخارج العداد $\mathbf{Q_DQ_CQ_BQ_A}$ من أجل الحالتين المنطقيتين:

 $R0(1) \cdot R0(2) = 1 \cdot R9(1) = 0 * R0(1) \cdot R0(2) \cdot R9(1) \cdot R9(2) = 1 *$

(20/10) على وثيقة الإجابة 2 (الصفحة (N=60)).

• دارة مراقبة درجة حرارة التسخين: شكل 4 (الصفحة 20/6).

س11: حدّد وظيفة الدارة1.

مستعينا بالوثيقة 2 (الصفحة 20/7):

س12: أملء على وثيقة الإجابة 2 (الصفحة 20/10) محتوى السجلين TRISA و TRISB.

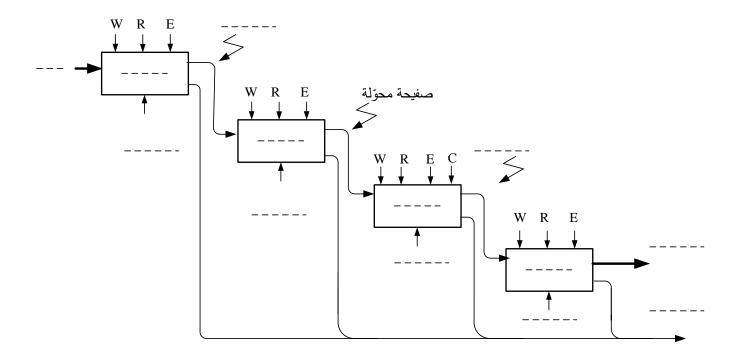
س 13: أكمل جدول التشغيل على وثيقة الإجابة 2 (الصفحة 20/10).

 0_{min} و $V_{\theta min}$ و $V_{\theta min}$ و $V_{\theta min}$ و $V_{\theta min}$

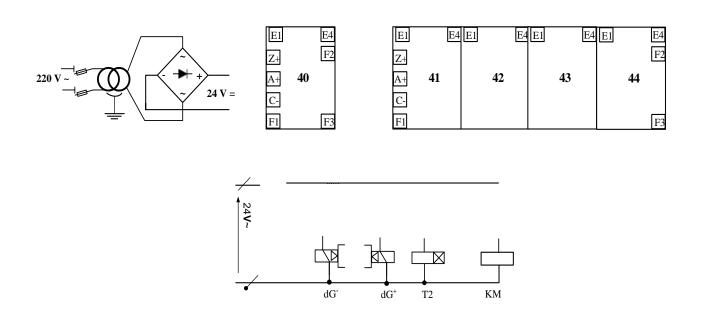
• المحرك M: بسبب خلل في المحرك استازم استبداله، من أجل ذلك تم أخذ الخصائص الكهربائية من لوحته الإشارية: 0.55KW, $\eta = 70\%$, 220V/ 380V.

باستعمال الوثيقة 3 (الصفحة 20/7):

س15: عين نوع المحرك المناسب.

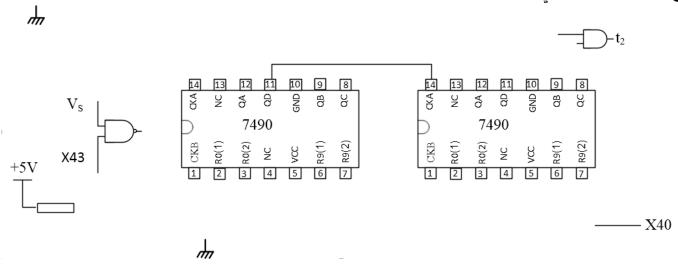

س16: استخرج المقادير الإسمية: سرعة الدوران، معامل الاستطاعة، النسبة بين التيار الممتص وتيار الإقلاع.

س17: أحسب في التشغيل الإسمى الاستطاعة الممتصة وتيار الإقلاع.



وثيقة الإجابة 1

ج1: النشاط البياني A0:


ج4: المعقب الكهربائي للأشغولة 4:

وثيقة الإجابة 2

ج10: المخطط المنطقي لدارة العداد:

ج12: ملء السجلين TRISA و TRISB:

السجل	المحتوى							
TRISA	-	-	-	1		1		
TRISB								

ج13: جدول التشغيل:

الحالات							
مقاومات التسخين 2×R _{ch} (مغذاة/غير مغذاة)	KR (محرض/غیر محرض)	(محرض/غیر محرض)	حالة المقحل T	المنفذ RA3 (الحالة المنطقية)	درجة الحرارة		
					θ_{min}		
					θ_{max}		

انتهى الموضوع الأول

الموضوع الثانى

الموضوع: نظام آلي لتجميع ومعالجة قطع معدنية

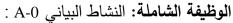
يحتوي هذا الموضوع على 10 صفحات:

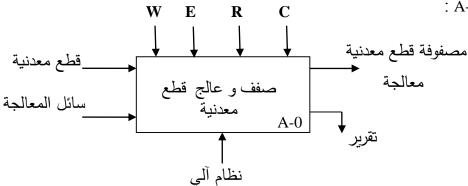
- العرض: من الصفحة 20/11 إلى الصفحة 20/17.
 - العمل المطلوب: الصفحة 20/18.
- وثائق الإجابة: من الصفحة 20/19 إلى الصفحة 20/20.

دفتر الشروط

- 1. هدف التألية: يهدف هذا النظام لتجميع ومعالجة قطع معدنية في أدنى وقت ممكن و بصفة مستمرة.
- 2. وصف الكيفية: تأتي القطع تباعا بواسطة البساط 1 لتشكيل صف من خمسة (5) قطع، وتحول إلى مكان التجميع على شكل مصفوفة مكونة من خمسة (5) صفوف، ثم تُرفع وتحول للمعالجة ويتم إخلاءها بعد ذلك عن طريق البساط 2.

توضيحات حول عملية المعالجة والإخلاء:


تبدأ المعالجة بخروج ساق الرافعة C ثم رَشٌ مصفوفة القطع بالسائل لمدة زمنية $t_3=10$ 8 بواسطة المضخة المتحكم فيها بالمحرك D4 . بانتهاء عملية الرشّ يرجع ساق الرافعة D5 و يدخل ساق الرافعة D6 لإخلاء مصفوفة القطع المعالجة ، وتنتهي الدورة برجوع ساق الرافعة D6.


ملاحظة : لا تنطلق عملية المعالجة عندما يصل مستوى السائل إلى حد أدنى يكشف عنه ملتقط المستوى cn.

- 3. الأمن: حسب القوانين المعمول بها.
- 4. الاستغلال: يحتاج النظام لعاملين:
- عامل للتشغيل والتوقيف.
- عامل مختص للصيانة والمراقبة.

5. التحليل الوظيفي:

W: طاقة كهربائية و هوائية.

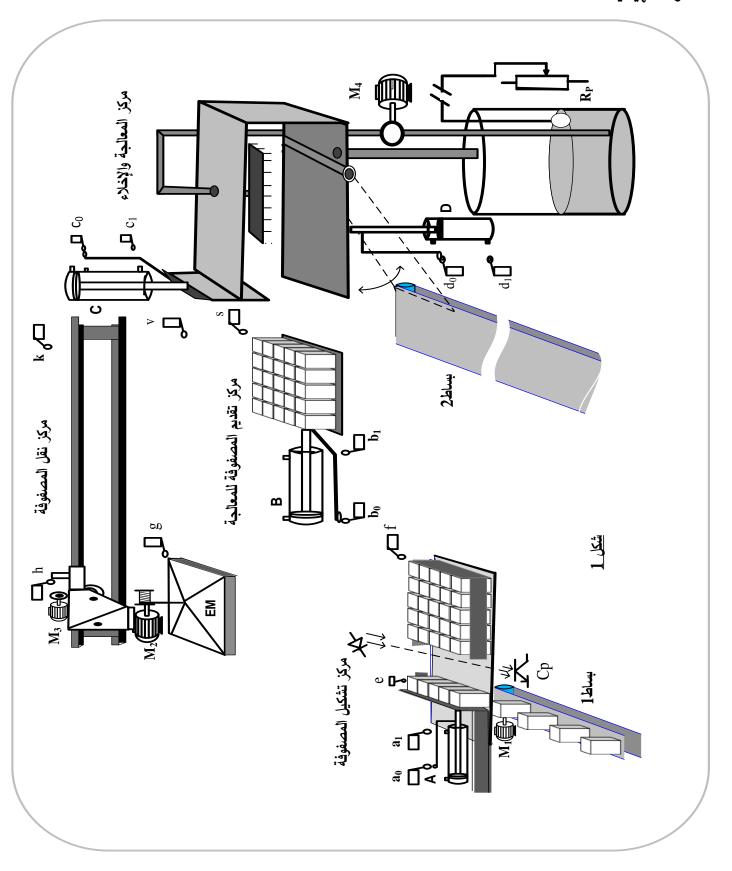
E: تعليمات الاستغلال.

R: الضبط.

: إعدادات.

التحليل الوظيفي التنازلي: يجزأ النظام إلى 4 أشغولات.

الأشغولة 1: التشكيل (تشكيل المصفوفة).


• الأشغولة 2: النقل (نقل المصفوفة).

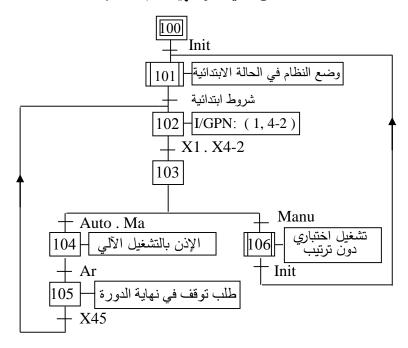
• الأشغولة 3: التقديم (تقديم المصفوفة للمعالجة).

• الأشغولة 4: المعالجة و الإخلاء (معالجة المصفوفة وإخلائها).

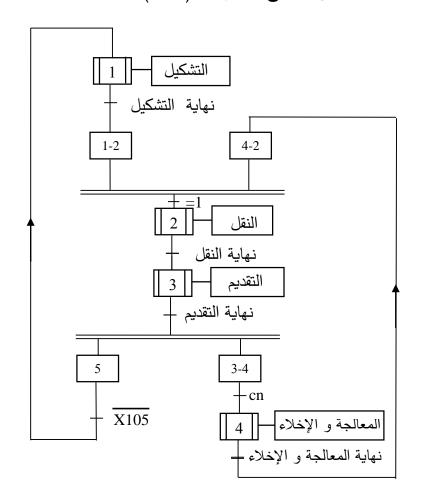
6. المناولة الهيكلية

7. الاختيارات التكنولوجية

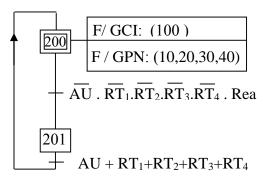
الملتقطات	المنفذات المتصدرة	المنفذات	الأشغولة
ao, aı : نهاية شوط . e : ملتقط يكشف عن تشكيل صف. Cp : خلية كهروضوئية للكشف عن مرور صف .	KM1 : ملامس كهرومغناطيسي ~ 24 V : ملامس كهرومغناطيسي ~ 24 V . كمروهوائي ~ 4/2 C : كهروهوائي ~ 24 V .	M1 : محرك لا تزامني ~3 اتجاه واحد للدوران. ا220/380V , Cosφ = 0.8 n=1440 tr/min , I=7A الفعة مزدوجة المفعول.	التشكيل
f,g : نهاية شوط لـ (EM) من جهة اليسار . h,k : نهاية شوط يكشفان عن موضع جملة النقل . النقل . v,s : نهاية شوط لـ (EM) من جهة اليمين . $t_1=5s$: زمن تثبيت المصفوفة بالكهرومغناطيس . $t_2=5s$: زمن تحرير المصفوفة عن الكهرومغناطيس .	24 V ~ ملامسات ~ KM21 , KM22 المتحكم في M2. 24 V ~ ملامسات ~ KM31 , KM32 المتحكم في M3. للتحكم في M3. KEM : ملامس الكهرومغناطيس ~ 24 V	M2 : محرك لا تزامني ~3 : M2 كانترامني ~3 : M2 محرك لا تزامني ~3 : M3 : محرك لا تزامني للدوران. 220/380V ، اتجاهين للدوران. EM : كهرومغناطيس أحادي الاستقرار ~220V.	النقل
: b ₀ , b ₁ نهاية شوط .	'dB- , dB : موزع 4/2 ثنائي الاستقرار كهروهوائي ~24 V .	B : رافعة مزدوجة المفعول.	التقديم
نهاية شوط. d_0 , d_1 : نهاية شوط. $t_3{=}10$ s : زمن المعالجة c_0 , c_1 نهاية شوط.	M4: ملامس ~ V 24 للتحكم في M4. + dD-, dD+ عوزع 4/2 ثنائي الاستقرار كهروهوائي ~V 24 V. + dC-, dC+ عوزع 4/2 ثنائي الاستقرار كهروهوائي ~V 24 V.	C : رافعة مزدوجة المفعول.	المعالجة والاخلاء

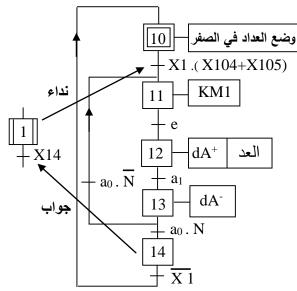

Ma/Ar : مبدلة التشغيل و التوقف ، AU : زر التوقف الاستعجالي ، Rea : زر إعادة التسليح ، Init : زر التهيئة RA/Ar : مرحلات حرارية لحماية المحركات ، Auto/Manu مبدلة الاشتغال آلي أو تشغيل اختباري دون ترتيب cn: ملتقط يكشف عن مستوى السائل في الخزان.

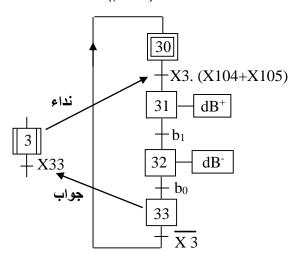
شبكة التغذية: 220V/380V; 50 Hz



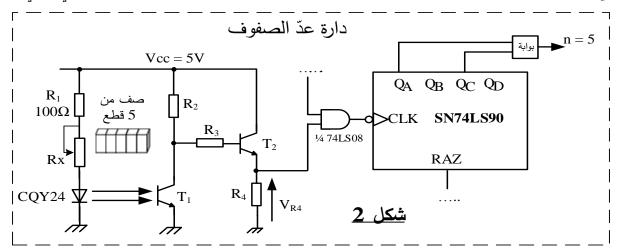
8. المناولة الزمنية:

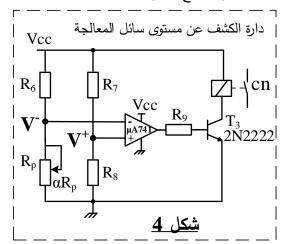

متمن القيادة والتهيئة: (G C I)


متمن تنسيق الأشغولات: (GPN)

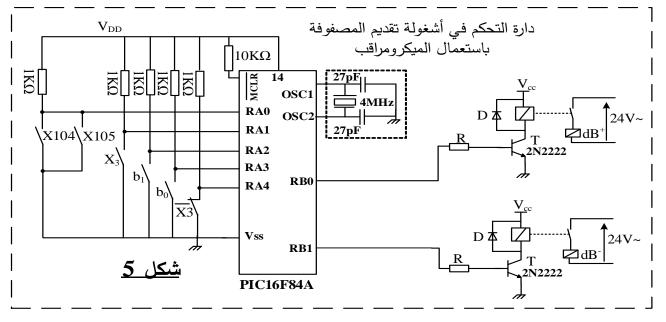

متمن الأمن: (GS)

متمن الأشغولة 1: (التشكيل)

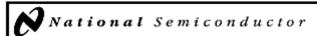

متمن الأشغولة 3: (التقديم)


9. انجازات تكنولوجية

لتكوين مصفوفة استعملت خلية كهروضوئية (Cp) وعداد بدارة مندمجة 74LS90 وفق التركيب الالكتروني التالي:


لتوفير الزمن الكافي لضمان شد مصفوفة
 بالكهرومغناطيس (EM) وُظف التركيب التالي:

لمراقبة مستوى سائل المعالجة استعمل مفرق Rp تتغير
 قيمة مقاومته مع مستوى السائل.


• وظفت الدارة المندمجة PIC 16F84A للتحكم في أشغولة تقديم المصفوفة وفق التركيب التالي:

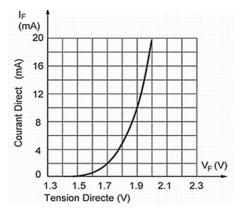
10 - ملحق

وثيقة 1: الدارة المندمجة SN74LS90

Function Tables

LS90 BCD Count Sequence (See Note A)

Count	Output						
Count	QD	QC	QB	QA			
0	L	L	L	L			
1	L	L	L	н			
2	L	L	н	L			
3	L	L	н	н			
4	L	н	L	L			
5	L	н	L	н			
6	L	н	н	L			
7	L	н	н	н			
8	н	L	L	L			
9	н	L	L	н			

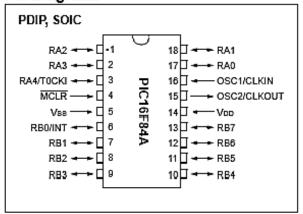

LS90 Reset/Count Truth Table

	Reset Inputs					put	
R0(1)	R0(2)	R9(1)	R9(2)	QD	$\mathbf{Q}_{\mathbf{C}}$	$Q_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
н	н	L	х	L	L	L	L
н	н	x	L	L	L	L	L
x	x	н	н	н	L	L	н
x	L	x	L	l	COL	JNT	
L	×	L	×		COI	JNT	
L	x	×	L	l	COI	JNT	
x	L	L	x		COL	JNT	

Note B: Output QD is connected to input A for bi-quinary count.

Note C: Output Q_A is connected to input B. Note D: H = High Level, L = Low Level, X = Don't Care.

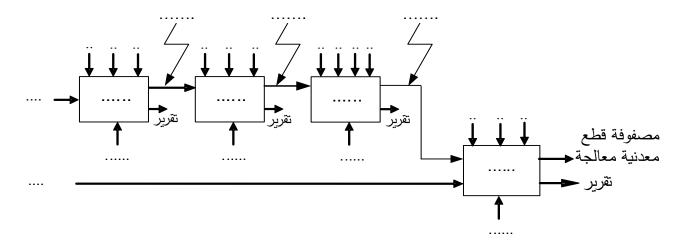
وثيقة 2: خاصية الثنائي الضوئي CQY24


وثيقة 3: الدارة المندمجة PIC 16F84A

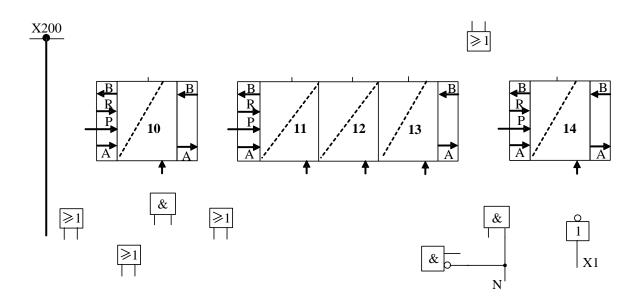
PIC16F84A

Mnemonic, Operands		Description
BYTE-ORIE	NTED FIL	E REGISTER OPERATIONS
CLRF	f	Clear f
MOVWF	f	Move W to f
BIT-ORIEN	TED FILE	REGISTER OPERATIONS
BCF	f, b	Bit Clear f
BSF	f, b	Bit Set f
BTFSC	f, b	Bit Test f, Skip if Clear
BTFSS	f, b	Bit Test f, Skip if Set
LITERAL A	ND CONT	ROL OPERATIONS
MOVLW	k	Move literal to W
RETFIE	-	Return from interrupt
RETLW	k	Return with literal in W

Pin Diagrams

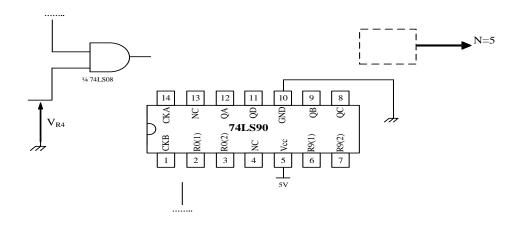

العمل المطلوب

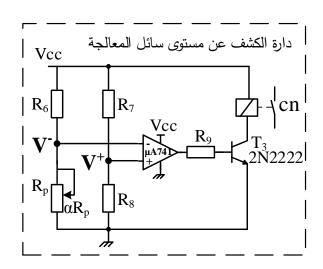
- س 1: أكمل التحليل الوظيفي التنازلي (النشاط البياني AO) على وثيقة الإجابة 1 (الصفحة 20/19).
- س 2: أنشئ متمن الأشغولة 4 (المعالجة و الإخلاء) من وجهة نظر جزء التحكم وفق دفتر الشروط.
- س 3: أكتب على شكل جدول معادلات التنشيط و التخميل والأفعال لمراحل متمن الأشغولة 1 (التشكيل) .
- س 4: أكمل ربط المعقب الهوائي الموافق للأشغولة 1 (التشكيل) على وثيقة الإجابة 1 (الصفحة 20/19).
 - دارة عدّ الصفوف: شكل 2 (الصفحة 20/16).
 - س 5: حدد دور المقاومة R_1 في التركيب.
- $_{\rm I_F=20mA}$)، مستعينا بالوثيقة 2 CQY24 شدته ($_{\rm I_F=20mA}$)، مستعينا بالوثيقة 2 (الصفحة $_{\rm I_F=20mA}$).
 - \mathbf{w} 6: أحسب قيمة المقاومة \mathbf{R}_{X} .
 - س 7: أكمل ربط العداد على وثيقة الإجابة 2 (الصفحة 20/20).
 - دارة المؤجلة T1 : شكل3 (الصفحة 20/16).
 - س 8: أحسب سعة المكثفة C.
 - دارة الكشف عن مستوى سائل المعالجة: شكل 4 (الصفحة 20/16).
 - س 9: اقترح حلا في التركيب لحماية المقحل T3 عند التبديل على وثيقة الإجابة 2 (الصفحة 20/20).
 - $^{-}$ عبارة $^{+}$ و عبارة $^{-}$.
 - دارة التحكم في أشغولة تقديم المصفوفة باستعمال الميكرومراقب: شكل 5 (الصفحة 20/16).
 - س 11: أكمل ملء السجلات TRISA و TRISB على وثيقة الإجابة 2 (الصفحة 20/20).
 - س 12: أكمل كتابة برنامج تهيئة المداخل / المخارج على وثيقة الإجابة 2 (الصفحة 20/20).
 - دراسة المحرك M1: (المقاومة المقاسة بين طورين $P_{\mathrm{fS}}=300$ ، $r=2\Omega$
 - س 13: أحسب الانزلاق.
 - س 14: أحسب الضياع بمفعول جول في الساكن.
 - س 15: أحسب الضياع بمفعول جول في الدوار.
 - دراسة المحول لتغذية المنفذات المتصدرة:
 - $P_f+P_J=10$ W ناصول: ، $m_0=0,112$ ، $U_1=220$ V :خصائص المحول
 - س 16: أحسب توتر الثانوي في الفراغ.
 - س 17: أحسب توتر الثانوي إذا كان الهبوط في التوتر يساوي V 0,64 V.
 - . $\cos \varphi = 0.94$ ، I = 5A: أحسب مردود المحول علما أن المواصفات الكهربائية للحمولة: 18



وثيقة الإجابة 1

ج 1: التحليل الوظيفي التنازلي (النشاط البياني A0)


ج 4: ربط المعقب الهوائي الموافق للأشغولة 1 (التشكيل)



وثيقة الإجابة 2

ج7: ربط العداد.

ج9: اقتراح الحل في التركيب لحماية المقحل T3 عند التبديل.

ج 11: ملء السجلات TRISA و TRISB.

TRISA	-	-	-				
TRISB	0	0	0	0	0	0	

ج 12: كتابة برنامج تهيئة المداخل / المخارج.

BSF	STATUS,RP0	;
	TRISB	أمح محتوى السجل TRISB أ
MOVLW		إشحن السجل W بالقيمة الثنائية (00011111) ;
MOVWF		إشحن محتوى السجل W في السجل TRISA ;
	STATUS, RP0	0 الرجوع إلى البنك

انتهى الموضوع الثاني