$\langle x$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = 1 - \frac{9}{u_n + 5}$: n ومن أجل كل عدد طبيعي $u_0 = 1$ حيث $u_0 = 1$ حيث $u_0 = 1$ متتالية عددية معرفة بحدها الأول $u_0 = 1$

 $u_n > -2 : n$ أ) برهن بالتراجع أنّه من أجل كل عدد طبيعي أنّه من أجل (1

بيّن أنّ (u_n) متتالية متناقصة تماما على $\mathbb N$ واستنتج أنّها متقاربة.

 $v_n = \frac{1}{u_n + 2}$: n نضع من أجل كل عدد طبيعي (2

. أثبت أنّ المتتالية $(
u_n)$ حسابية أساسها $\frac{1}{3}$ يطلب تعيين حدها الأول الثبت أنّ

 $\lim_{n \to +\infty} u_n$ عبّر بدلالة n عن v_n و v_n عن (3

 $u_0v_0 + u_1v_1 + \dots + u_nv_n = \frac{1}{3}(1-n^2)$: n عدد طبیعي (4

التمرين الثاني: (04 نقاط)

يحوي صندوق 10 كريات متماثلة لا نفرق بينها باللمس، منها أربع كريات بيضاء مرقمة بـ: 1 ، 2 ، 2 ، 3 وثلاث كريات خضراء مرقمة بـ: 2 ، 3 ، 3 نسحب عشوائيا وفي آن واحد 3 كربات من هذا الصندوق.

تسخب عسواني وني ١٥ واحد و حريات من هذا المصندوي.

نعتبر الحادثتين A: "الكريات الثلاث المسحوبة تحمل ألوان العلم الوطني"

و B: "الكريات الثلاث المسحوبة لها نفس الرقم".

الترتيب. P(A) و P(B) احتمالي الحادثتين P(A) و P(A)

. $P(A \cup B)$ و $P_A(B)$ ثم استنتج $P(A \cap B) = \frac{1}{20}$ و . بيّن أنّ

2) ليكن X المتغيّر العشوائي الذي يرفق بكل نتيجة عملية سحب عدد الكريات التي تحمل رقما فرديا. عرّف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X).

التمرين الثالث: (05 نقاط)

 $z^2 - \sqrt{3} z + 1 = 0$: المعادلة ذات المجهول z التالية (1 المركبة $z^2 - \sqrt{3} z + 1 = 0$ المعادلة ذات المجهول المعادلة المركبة $z^2 - \sqrt{3} z + 1 = 0$

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

 $\left(\mathbf{O}; \overrightarrow{u}, \overrightarrow{v}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (2

: حيث Z_C و Z_B ، Z_A : الترتيب Z_C عيث المستوي لاحقاتها على الترتيب Z_C عيث Z_C عيث

(
$$Z_B$$
 و $Z_B = \frac{\sqrt{3}}{2} + i\frac{1}{2}$ ، $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$) ($Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$) اكتب $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ الأسي ثم عيّن قيم العدد الطبيعي $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ اكتب $Z_A = \frac{1}{2} + i\frac{\sqrt{3}}{2}$

 \cdot OBC وحدّد طبیعة المثلث $\frac{Z_B}{Z_C}=e^{i\frac{\pi}{3}}$: (أ (3)

ب) استنتج أنّ: B هي صورة C بدوران r يطلب تعيين عناصره المميزة.

$$|z| = |\overline{z} - \frac{\sqrt{3} + i}{2}|$$
 تسمي (γ) مجموعة النقط M من المستوي ذات اللاحقة z التي تحقق: (γ) مجموعة (γ) ثم عيّن صورتها بالدوران z .

التمرين الرابع: (07 نقاط)

. $g(x)=2+(x-1)e^{-x}$ كما يلي: \mathbb{R} كما يلي: الدالة العددية المعرفة على g .I

 $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ احسب (أ

p ادرس اتجاه تغیر الدالة p ثم شكّل جدول تغیراتها.

- \mathbb{R} على g(x) على أنّ المعادلة g(x)=0 تقبل حلا وحيدا lpha حيث $\alpha<-0.38$ حيث $\alpha<-0.38$ على α
- المستوي المستوي المستوي وليكن $f(x) = 2x + 1 xe^{-x}$ به المستوي ا
 - $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (أ (1
 - بیانیا. $\lim_{x\to +\infty} (f(x)-(2x+1))$ مصر النتیجة بیانیا.
 - $(\Delta): y=2x+1$:حيث (Δ) والمستقيم (C_f) والمستقيم الدرس الوضع النسبي للمنحني المنحني (C_f)
- بيّن أنّه من أجل كل عدد حقيقي x يكون g(x)=g(x) ثم استنتج اتجاه تغير الدالة f وشكّل جدول تغيراتها.
 - . 1 اكتب معادلة المماس (T) للمنحنى النقطة ذات الفاصلة (3
 - . $(f(\alpha)=0.8$ نأخذ (C_f) والمنحنى (T) ، (Δ) ارسم (4
 - . $x = (1-m)e^x$: x المجهول : x المعادلة ذات المجهول m عدد وإشارة حلول المعادلة ذات المجهول m
- . x=1 على \mathbb{R} والتي تنعدم من أجل الحالة الأصلية للدالة $x\mapsto xe^{-x}$ على المكاملة بالتجزئة عيّن الدالة الأصلية للدالة
- (x=1) احسب العدد (C_f) والمستقيمات التي معادلاتها الحيز المستوي المحدّد بالمنحنى (x=1) والمستقيمات التي معادلاتها (x=1) . (x=1)

انتهى الموضوع الأول

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

الموضوع الثاني

التمرين الأول: (04 نقاط)

$$u_{n+1} = u_n + \ln\left(\frac{2n+3}{2n+1}\right)$$
 : n عددیة عددیة معرفة کما یلي: $u_0 = 0$ و من أجل کل عدد طبیعي $u_n = 0$

- u_3 و u_2 ، u_1 کلا من (1
- . (u_n) غير المتتالية $\frac{2n+3}{2n+1} > 1$: n عدد طبيعي عدد طبيعي (2
 - $v_n=2n+1$: ب متتالیة عددیة معرفة من أجل کل عدد طبیعي (v_n) (3
 - $e^{u_n}=v_n$ ، برهن بالتراجع أنه من أجل كل عدد طبيعي (أ
 - . $\lim_{n\to\infty}u_n$ استنتج عبارة الحد العام للمنتالية (u_n) بدلالة n ثم احسب (u_n)
 - احسب المجموعين S_n و T حيث:

$$T = e^{u_{1439}} + e^{u_{1440}} + \dots + e^{u_{2018}} \quad \text{o} \quad S_n = \ln\left(\frac{v_1}{v_0}\right) + \ln\left(\frac{v_2}{v_1}\right) + \dots + \ln\left(\frac{v_n}{v_{n-1}}\right)$$

التمرين الثاني: (04 نقاط)

 (P_1) الفضاء منسوب إلى المعلم المتعامد المتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ ، نعتبر النقطة المعلم المتعامد المتجانس

$$-3x+y+z+4=0$$
 و $-x+y+2z+1=0$ و اللذين معادلتيهما على الترتيب $-x+y+2z+1=0$

- (1) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و u(1;5;-2) شعاع توجيه له.
 - (Δ) بيّن أنّ المستويين (P_1) و (P_2) متقاطعان ثم تحقق أن تقاطعهما هو المستقيم و (2
- الذي يشمل B(-1;4;0) ويعامد كلا من P_1 و الذي يشمل B(-1;4;0) الذي يشمل B(-1;4;0) ويعامد كلا من P_2 ويعامد كلا من P_3 ويعامد كلا من P_2 و المستويات الثلاثة P_3 و P_2 و P_3 و المستويات الثلاثة P_3 و المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات المستويات الثلاثة و المستويات الثلاثة و المستويات المستو
 - لتكن E(2;3;-1) و E(2;3;-1) نقطتان من الفضاء.
 - اً) تحقّق أنّ H هي المسقط العمودي للنقطة B على المستوي H
 - \bullet . AEBH ثم احسب V حجم رباعي الوجوه EBH ثم احسب

التمرين الثالث: (05 نقاط)

- (z المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : $(z-4+i)(z^2-4z+5)=0$ المعادلة : (z المرافق العدد (z
- - تحقق أنّ $\frac{Z_B-Z_A}{Z_C-Z_A}$ ثم عيّن قيم العدد الطبيعي n بحيث يكون العدد $\frac{Z_B-Z_A}{Z_C-Z_A}=i$ تخيليا صرفا.

اختبار في مادة: الرياضيات / الشعبة: علوم تجريبية / بكالوريا 2018

$$\begin{cases} |z_D - z_A| = |z_B - z_A| \\ Arg\left(\frac{Z_D - Z_A}{Z_B - Z_A}\right) = \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \end{cases}$$
 :غطة من المستوي لاحقتها Z_D حيث: D (2)

 \mathcal{Z}_D بيّن أن المثلث ABD متقايس الأضلاع و احسب

A مركز ثقل المثلث ABD ثم عيّن نسبة وزاوية التشابه المباشر الذي مركزه G مركز G الحسب G الحول G

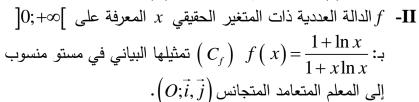
$$\operatorname{Arg}\left(\frac{z_G-z}{z_C-z}\right)=\pi+2k\pi\;(k\in\mathbb{Z})$$
 عيّن (C عيّن (C عيّن (C تختلف عن C تختلف عن (C تختلف عن (C عيّن (C عيّن (C عيّن (C عيّن (C عين (C

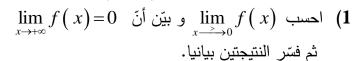
التمرين الرابع: (07 نقاط)

الدالة العددية ذات المتغير الحقيقي x المعرفة على $]0;+\infty[$ بـ: g

و
$$g(x) = \frac{1}{x} - (\ln x)^2 - \ln x - 1$$
 و $g(x) = \frac{1}{x}$ المنحنى البياني الممثل لها كما هو مبيّن في الشكل المقابل:

. g(x) ثم استنتج بیانیا إشارة g(1) –





.
$$f'(x) = \frac{g(x)}{(1+x\ln x)^2}$$
:]0;+∞[من أجل كل x من أجل كل (2

 $oldsymbol{+}$ استنتج اتجاه تغیر الداله f و شکل جدول تغیراتها.

بيّن أنّ
$$y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}$$
 هي معادلة لـ (T) مماس المنحنى $y = \left(\frac{e^2}{e-1}\right)x - \frac{e}{e-1}$ الفواصل، ثم ارسم المماس T و المنحنى T

. عيّن بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة $(e-1)f(x)=e^2x-me$ عيّن بيانيا قيم الوسيط الحقيقي

$$\left(C_f\right)$$
مساحة الحيز من المستوي المحدد بحامل محور الفواصل و المنحنى I_n ، $n>1$ عدد طبيعي حيث $n>1$ عدد طبيعي المحدد بحامل محادلتيهما $x=1$ و المستقيمين اللذين معادلتيهما $x=1$

 $I_n = \ln \left(1 + n \ln n \right) : n > 1$ بیّن أنّه من أجل كل عدد طبیعي n حیث (1

$$(I_n)$$
 ادرس اتجاه تغیر المتتالیة (2

